Efficient Active Set Algorithms for Solving Constrained LS Problems in Aircraft Control Allocation

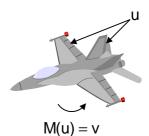
Ola Härkegård Linköpings universitet, Sweden

Ola Härkegård Active Set Algorithms for Solving LS Problems in Aircraft Control Allocation

Main Message

Today: Efficient but approximate methods

- Can standard QP methods be used efficiently?
- Yes, complexity ≈ pseudoinverse methods



What is Control Allocation?

- Control design \rightarrow M(u) = Bu = v
- Actuator constraints

• Position: $u_{min} \le u \le u_{max}$

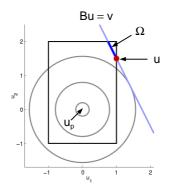
 $r_{min} \le \dot{u} \le r_{max}$ Rate:

$$\dot{u}(t) \approx \frac{u(t) - u(t - T)}{T} \rightarrow$$

$$Bu(t) = v(t)$$

$$\underline{u}(t) \le u(t) \le \overline{u}(t)$$

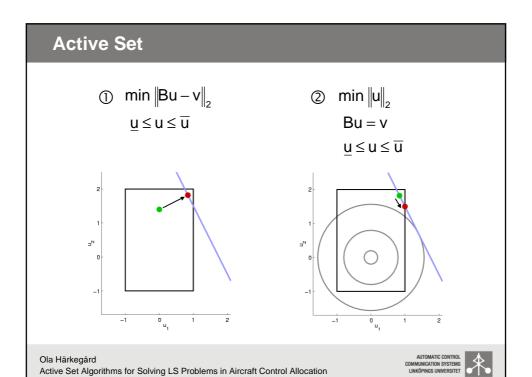
Active Set Algorithms for Solving LS Problems in Aircraft Control Allocation

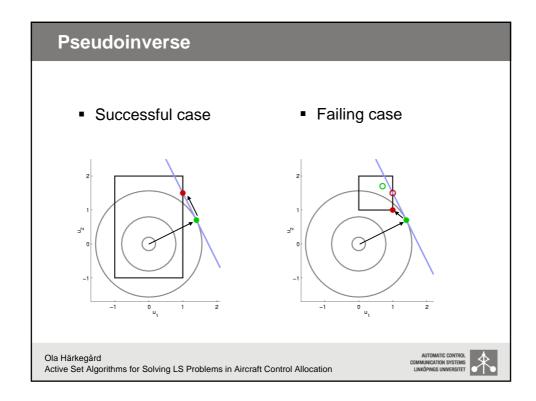


Least Squares Formulation

Sequential least squares:

$$\Omega = \arg\min \|W_v(Bu - v)\|_2$$
$$\underline{u} \le u \le \overline{u}$$

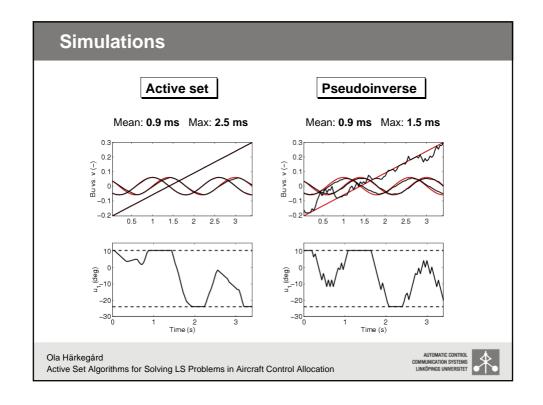

$$u = arg min \left\| W_u \left(u - u_p \right) \right\|_2$$
$$u \in \Omega$$



Ola Härkegård

Numerical Methods

- Active set methods (this paper)
- Pseudoinverse methods (dominate)
- ...



Why Active Set?

- Always finds optimal solution
- Can reuse previous solution
- All iterates are feasible

■ 8 actuators, 3 moments ■ Position and rate limits Aerodynamic coefficients Ola Härkegård Active Set Algorithms for Solving LS Problems in Aircraft Control Allocation

Conclusions

Active set methods are well suited for control allocation

- Find optimal control input
- Complexity ≈ pseudoinverse methods

