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Abstract

This paper considers actuator redundancy management for a class of overactuated nonlinear systems. Two tools for distributing the
control effort among a redundant set of actuators are optimal control design and control allocation. In this paper, we investigate the
relationship between these two design tools when the performance indexes are quadratic in the control input. We show that for a particular
class of nonlinear systems, they give exactly the same design freedom in distributing the control effort among the actuators. Linear
quadratic optimal control is contained as a special case. A benefit of using a separate control allocator is that actuator constraints can be
considered, which is illustrated with a flight control example.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction Sivan, 1972 Anderson & Moore, 1989Dorato, Abdallah,
& Cerone, 199%and.*# . control Zhou, Doyle, & Glover,
Actuator or effector redundancy is one issue to be dealt 1996 are readily available.
with when designing controllers for overactuated dynamic  An alternative is to separate the regulation task from the
systems. The terms actuator and effector are not used quiteontrol distribution task. With this strategy, the control law
consistently in the literature, but in, for example, flight con-  specifies only the total control effort to be produced. The
trol one could talk about actuators driving the control sur- distribution of control among the actuators is then decided by
faces, which are the effectors of the aircraft. In our case a separateontrol allocationmodule. The resulting control
there is no need to distinguish between actuators and ef-configuration is illustrated ifFig. 1 This strategy can be
fectors since we merely assume that redundancy in any offound in several practical applications such as aerospace
them leads to our mathematical formulation below. A com- control Qurham, 1993Adams, Buffington, & Banda, 1994
mon approach is to use optimal control desigth@ns &  Virnig & Bodden, 1994 Shertzer, Zimpfer, & Brown, 2002
Falb, 1966 Bryson & Ho, 1975 Lewis & Syrmos, 199pto and control of marine vehicled. indfors, 1993 Serdalen,
shape the closed-loop dynamics as well as the actuator con41997 Johansen, Fossen, & Berge, 2R08imilar control
trol distribution in one step. For linear systems in particular, distribution concepts can also be found in biomechanical
methods like linear quadratic (LQ) contrd{\{yakernaak &  muscle control Thelen, Anderson, & Delp, 200Znd yaw
stability control for cars Kattori, Koibuchi, & Yokoyama,
2002.
* This paper was presented at the European Control Conference, 1-4 In this paper, we derive some connections between these
September 2003, Cambridge, UK. This paper was recommended for pub-two strategies, i.e., between (a) using optimal control to de-

Ii(f:aéidq? in;ev}i(sheﬂ_lform by Associate Editor T.I. Fossen under the direction cide the control input directly, and (b) using optimal control
of Editor H. Khalil.

* Corresponding author. Tel.: +46 13281308; fax: +46 13282622. to quIde the total control eﬁor_t and then u_smg control allo-
E-mail addressesola@isy.liu.se (0. Harkegltd), torkel@isy.liu.se cation to compute the control input. We will study the case
(S.T. Glad). when the performance indexes used in the optimal control

0005-1098/$ - see front matté& 2004 Elsevier Ltd. All rights reserved.
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r v " y Let us now consider two possible control designs for this
> Control .| Ccontrol = class of systems. In Design 1, an optimal control problem is

» System

posed directly in terms af. In Design 2, an optimal control
problem is posed in terms of and the solution is then
mapped ontal using control allocation. Quadratic control

law " | allocation T
X
costs are used in both designs.

Fig. 1. Control configuration when regulation and control allocation are
performed separately.

Design 1. Consider the system descripti¢h). Determine

u(t) by solving

designs and in the control allocation are quadratic in the con- o

trol input. This comparison is particularly interesting from a min/ [q(x) + u' Ry (x)u]dt,

flight control perspective since LQ control design (which is “®) J0

contained as a special case) is a commonly used method toyhereq (x) >0 and R, (x) = Ry, (x)T > 0.

day Gangaas, Bruce, Blight, & Ly, 198&tevens & Lewis,

1992 Amato, Mattei, & Scala, 199Balas, 2003and con-

trol allocation is possibly becoming onélgnson, 2002

Balas, 2003 A related comparison between dynamic and

static optimization for computing the actuator control dis- myin

tribution can be found inderson and Pandy (2001) v Jo
The main result to_ be shown is that for a par_ticular clas_s whereg(x) >0 and R, (x) = Ry(x)T > 0. Then determine

of overactuated nonlinear systems, the two design strategies :

. . ) 2™%u(t) by solving

offer precisely the same design freedom. Given one design,

we show how to select the parameters of the other design to

obtain the same control law. We also motivate what benefits

a modular design—with a separate control allocator—offers.

(4)

Design 2. Consider the system descripti¢B). Determine
v(t) by solving

[q(x) + v" Ry (x)v]dr, (5)

min
u(t)

subjectto B(x)u = v,

uTW(x)u,
(6)

In particular, actuator constraints can be handled in a po-herew (x) = W(x)" > 0.

tentially better way, which is illustrated with a flight control
example.

2. Problem description

Consider a nonlinear system of the form

X =a(x) + By(x)u, y

wherea(x) € R", B,(x) € R x(¢t) € R"isthe state, and
u(tr) € R™ is the control input. Assume that rabk(x) =

k <m Vx, i.e., thatB,(x) does not have full column rank.
This implies thatB, (x) can be factorized as

B, (x) = By(x)B(x), )

where B, (x) € R”* and B(x) € R both have rank.
This gives the alternative system description

X =a(x)+ By(x)v,

v=BX)u, 3

wherev(t) € R can be interpreted as the total control effort
produced by the actuators. We will refervias thevirtual
control input

Sincek < m, B (and alsaB,) has a nullspace of dimension
m — k in which u can be perturbed without affecting the

We will refer to (6) ag2-optimal control allocation. It is
straightforward to show that (6) has the solution

u=wx) B (BXWKX)Bx)") 1. (7)

Both Designs 1 and 2 involve the solving of optimal control
problems. Design 2 can be computed by first calculating
V(x) from the Hamilton—Jacobi equation (8) below. The
optimal controlv(z) is then computed as a state feedback,
given by (9).
0=¢g(x) + Vi(x)a(x)

— Vi@ By )Ry () By () V()T 8)
©)

For Design 1,R,, B, are replaced by, B,, respectively.

v=—1R W BV,

Theorem 3. Let the Hamilton—Jacobi equatiaf8) have a
continuously differentiable solution witti(0) = 0 in some
open set2 containing the origin. Assume that there exists
a setM e Q such that all solutions of3), (9) starting in

M remain inQ and converge to the origin. Then the value
of the criterion in(5) is V(x,) for a trajectory starting in
X, € M. The control law(9) is optimal in the following
senselet v be another control that generates a trajectory

system dynamics. This means that there are several waysstarting inx,, remaining inQ and converging to the origin
to apportion the control among the actuators, all of which whose value of the criterion it4) is V. ThenV >V (x,).
make the system behave the same way. This is the type of

actuator redundancy that is typically considered in control Proof. This is a standard result in optimal control. A cor-
allocation applications. responding global theorem can be found ®Befpulchre,
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Jankovc, & Kokotovi¢, 1997, Theorem 3.39vhile the re- Proof. According to Theorem 4 the virtual controls gener-
striction to optimality on a set is discussed iceitmann, ated by the two designs as well as the associated optimal
1981, Chapter 15 [ costs are equal if (10) holds. Comparing (7), (9) with (12)

we see that the actual control laws generated are the same if
3. Main result RABT=wtBT(BW BT IRT (15)

h which is a stronger condition than (10). For giv&p, se-
lecting R, andW as in (13) clearly satisfies this relation. To
derive (14) we rewrite (15) as

We will now present the main results of the paper whic
connect the solutions of Designs 1 and 2.

Theqrem 4. Consider Designd and2 and assume thatthe 4 -1 ,7T _ AT(AAT)—lRU—l _ ATRu_l,

matricesR,, and R,, are related as

T 1 whereX =W~Y2R, Ww—Y2 A=BW~Y2 w/2is the sym-
BO)R, () "B(x) " = Ry(x) ™. (10) metric square root oV, and the pseudoinverse’ satisfies
Then the following holds AAT = (AT)TAT = I. One solution is given by

e The Hamilton—Jacobi equations associated with De- X = ATRIANT + 17— AT(AAT) 1A
signs1 and 2 will be identical. In particular if one of
the problems has a solution satisfying the assumptions
of TheorenB, the other one will also and the optimal

which according to Lemma 6 (see Appendix A) is positive
definite and has the inverse

costs in(4) and (5) are the same X=ATR,A+1—-AT(AAT)1A.

e If u* andv* are the optimal controls associated with o ) )
Designsl and 2, respectivelythen In the original variables we get the sought expression
B(x)u* =v* R, =wY2xw'?

T —1pT\—1
and the corresponding x-trajectories are the same =W+ B[Ry —(BW "B') "]B. O

Proof. Letu* andv* be the optimal controls corresponding 3.1. A simple example
to Designs 1 and 2, respectively. Hareis computed from

(8), (9) whilew* is the solution of Consider the system
0=¢q(x)+ Vi(x)a(x) X1 = X2, (16)
— 3V () By () Ry () B () Ve ()T, 11
7 Vi () By () Ry (x) ™" By (x) " Vi (x) (11) fo = —x3 4t + 205 (17)
u=—3R,(x) " B,(0)TV,(x)". (12)

with the optimization criterion

SubstitutingB, = B, B andBR;*BT = R; L into (11) shows ~ 1

that (11) and (8) are in fact identical. Since /0 <Xf' + > X2+ x5 +ul+ 4,45) dr. (18)

Bu*=—-3BR,;*B"B] V] =—3R;'B] V] =v*
Here, we have

implies B,u* = B,v*, the optimal trajectories will be the

same. U |0 0] |0
R HEE (19)
This theorem does not answer the question whether B, B
defined by (6) is equal to the optimalof Design 1. That is )
the subject of the next theorem. so the Design 2 problem has the system
Theorem 5. The control laws generated by Desighsnd = (20)
2 are the same in the following two cases Xo = _xf + v, (21)
o If, for givenR,, the matricesk, and W are chosen as  with criterion
— -1 T-1 > 1 1
Ry(x) = [B(x)R, () *B(x) 17, / <xf+ 1oy _vz> dr. (22)
W(x) = Ry(x). (13) 0 2 2
e If, for given R, and W the matrixR, is chosen as where we have used
_ T 1 0
Ru(0) =W + BTIR0) — R = BR-IBT=[1 2) [ 1] H _2
~ BOW® BWNHBW@). (14) 0 zlL2
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The Hamilton—Jacobi equation becomes

(

eV 1
1ox, 2

ov
Oxo

1 ov
—x% —|—x§ +xo—

0=x?
x1+2 Ox1

>2
and has the solution
V= %xf—{—xf—l—xlxz—i—x%
with control law
ov
v:——:—x1—2x2.
Oxo

The optimal control in terms af; andu, can now be cal-
culated from

U + 4u),
subject to ug + 2up = —x1 — 2x2

min
u

(23)
i —_1 __1 1

with the resultu; = —5x1 — x2, up = —zx1 — 5x2.

However, it is also possible to change the weighting of
uy anduz by solving

min  (aw? + Pu3),
subjecbft to w1+ 2up =—x1 — 2x2 (24)
for arbitrary positivex and . The solution is then
20
uy = —m (x1+2x2), wu2= —m (x1 + 2x2)

showing that it is possible to shift the control effort between
uy anduy. According to Theorem 5 all these choices are
optimal, corresponding to

R z[a+f(oc,ﬁ) 2f (@, p) ]

Tl 2@ B BHAf@p]
_ p+4a—20p

TP =" e

and the same optimal co$t(x). If a, f are chosen so that
a4 4[}‘1 = 2 there is the simple relatioR, = W.

4. The linear quadratic case

An important special case is when system (1) is linear

and the performance indexes are quadratic also in the state.

The optimal control problems (4) and (5) then reduce to
standard linear quadratic regulation (LQR) problems. This
occurs wheri(x) = Ax, g(x) =x' Qx whereQ >0, and the
matricesB,, B,, B, R,, R,, andW are constant.

In this case, the Hamilton—Jacobi equation (8) has the
solutionV (x) = x ' Px whereP solves the algebraic Riccati
equation
0=Q+A"P+PA—PB,R,'BIP. (25)

If the pair (A, B,) (or equivalently the paifA, B,)) is sta-
bilizable and the pai(A, Q) is detectable, then (25) has

O. Harkegéard, S.T. Glad / Automatica 41 (2005) 137144

a unigue positive definite solutio® such that the optimal
control

v=—R;1B] Px

is asymptotically stabilizingKwakernaak & Sivan, 1972
Anderson & Moore, 198PDorato et al., 1996 Hence, these
conditions certify that the assumptions in Theorem 3 hold
globally so that the conversion rules of Theorem 5 can be
applied to go from a unified Design 1 to a modular Design
2 or vice versa.

5. Discussion

Let us now discuss the implications of Theorems 4
and 5, relating optimal control design tgoptimal control
allocation.

The main message is that the two approaches described
in Section 2 give the designer exactly the same freedom to
shape the closed-loop dynamics and to distribute the control
effort among the actuators. Given the design parameters of
one design, Theorem 5 states how the parameters of the
other design should be selected to achieve precisely the same
control law.

So why then split the control design into two separate
tasks? Let us list some benefits of using a modular control
design.

e Solving the Hamilton—Jacobi equatiom the nonlin-
ear case, the solution of the Hamilton—Jacobi equation
(8) usually has to be done numerically and can involve
heavy computations. However, R, is kept constant
andW s varied it is not necessary to recompute the so-
lution of (8), but it is still possible to change the weight-
ing of the different components of The second part
of Theorem 5 shows that this can be done without los-
ing optimality with respect to the criterion in Design 1.
It is then possible to viewV in (14) as a parameteriza-
tion of matricesRr,, that have the same Hamilton—Jacobi
equation.
Facilitates tuning.In Design 1, modifying an element
of the control input weighting matrixg,,, will affect the
control distribution as well as the closed-loop behavior
of the system. In Design 2, the tuning of the closed loop
dynamics is separated from the design of the control
distribution.
Easy to reconfigureéAn actuator failure can sometimes
be modeled as a change in tBematrix. In Design 2,
this only affects the control allocation. Hence, if the
failure is detected, the neB-matrix can be used for
control allocation, while the original virtual control law
can be kept, provided that the damaged system can still
be controlled.
e Arbitrary control allocation methodThe condition in
Theorem 4 for the two approaches to give the same
x-trajectories does not involve the control allocator.
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Hence, if we selecR, as in (10), we can choose any 6.1. Aircraft model
control allocation mapping = i (v) in Design 2 such
that Bh(v) =v, without altering the closed loop dynam- The linearized aircraft model is given by
ics from Design 1. For a survey of control allocation -
methods, see, e.gdordignon (1996)Bodson (2002) x=lef pgrl —in,
Harkegird (2003) y=1[o B pI" = Yiin,
e Actuator constraintsWith a separate control allocator, & =[5, 6, d1c 0,1 — diin,
actuator constraints can be handled to some extent. If;, — [y w,, u;, u,1" — win,

the control input is bounded hy<u(¢) <u, the control % A B, X 0
allocation problem in Design 2 can be reformulated as [5} = [O —B(g] [5} [BJ u, (27)

. whereo = angle of attackf$ = sideslip anglep = roll rate,
u=argminu' Wu, x g b b angiep

well g =pitch rate, ana =yaw rate are the aircraft state variables
U =arg min (Bu —v) Wy (Bu — v). (26) (see, e.g.Stevens & Lewis (1992)_5 and u contain the
u<u<u actual and the commanded deflections of the canard wings,

the right and left elevons, and the rudder, respectively, and
Given%, the set of feasible control inputs that minimize  Xiin,» Yiin, €tc. are the points of linearization. The control
| Bu — v|w,, we pick the control input that minimizes ~ surfaces are limited by
llu|lw- In this way, the control capabilities of the actu- P P
ator suite can be fully exploited before the closed loop dc € [-55,29] - 180’ Ore» Otes Oy € [—30,30)] - 180
performance is degraded. Also, whB8n = v is not at-
tainable due to the constrainig, allows the designer to
prioritize between the components of the virtual control
input. The optimization problem (26) can be efficiently —0.5432 00137 0 09778 0

and have first-order dynamics with a time constant of 0.05s
corresponding tas = 201/. For the considered flight case,

solved using, e.g., active set methoHgitkegird, 2002 0 -01179 02215 0 -09661
A i A= 0 —-105128 —0.9967 0 06176
or interior point methodsRetersen & Bodson, 20D3 26221  —0.0030 0 05057 0
0 07075 —0.0939 0  —02127
Remark. It should be stressed that including the constraints 0.0069 —0.0866 —0.0866 Q0004
in the control allocation is not equivalent to the more com- 0 00119 -0.0119 Q0287
plex problem of including the constraints in the optimal con- Bx=| 0~ —4.2423 42423 14871
trol problem in Design 1. This requires the constraints to 16532 —-1.2735 -1.2735 00024
be considered for all future times. With constrained control 0 —0.2805 02805 —0.8823

allocation the constraints are only considered pointwise in For this system, ranks = k = m = 4. Hence, although the
time which can be viewed as a “poor man’s constrained op- number of effectors exceeds the number of controlled vari-
timal control strategy”. ables (dimy = 3), the redundancy is not in a form that can

be exploited using control allocation. Let us therefore make
Apparently, a modular design has several potential bene-the two following approximations:

fits. Unfortunately, not all systems with more actuators than

controlled variables display the type of redundancy that can ¢ The actuator dynamics are neglected, Besu is used.

be resolved using control allocation. In some cases however, o The control surfaces are viewed as pure moment gener-
proper model approximations can be made to achieve mod-  ators and their influence anand f is neglected. This

ularity, as we will see in the dESign example in the fO||0Wing Corresponds to Zeroing the two top rowsBJ(f_
section.

This gives the approximate model
X =Ax + B,u = Ax + Byv,

6. Flight control example v=Bu, (28)
where
To investigate the potential benefits of a modular optimal s
control design we use a flight control example based on B, = ByB, B, = [13:3]

the ADMIRE model ADMIRE ver. 3.4h, 2003Backstréom,
1997. ADMIRE describes a small single engine fighter with andB contains the last three rows 8f which mean% =3.

a delta-canard configuration. To induce actuator saturations,The resulting virtual control inputy = Bu, contains the
we consider a low-speed flight case, Mach 0.22, altitude angular accelerations in roll, pitch, and yaw produced by the
3000 m, where the control surface efficiency is poor. control surfaces.
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6.2. Control design
Let us investigate two different control strategies:

(1) Standard LQ design for the approximate model (28)
with weighting matrice®Q, R,.

(2) LQ design andy-optimal control allocation for the ap-
proximate model (28) with weighting matric€} R,,
andW. To handle actuator position constraints, the ex-
tended control allocation formulation (26) is used.

The weighting matrice® and R, are selected as

0 = diag(10, 10, 2, 1, 10),
R, = diag(10, 10, 10, 10)

to achieve desirable characteristics of the short period mode
of the aircraft, the dutch roll mode, and the roll mode. For
the second desigrR, andW are selected according to (13).
The matrixW, in (26) is selected as

W, = diag(L, 1, 20)

to prioritize the yawing moment in order to maintain a low
sideslip anglep.

To achieve set-point regulation arounet ye rather than
aroundx = 0, the LQ control laws foru and v are aug-
mented with a feedforward term from the referengg, see
Harkegird (2003) Chapter 10.

6.3. Simulation results

Fig. 2 shows the simulation results for the two control
designs applied to the original linear model (27). Prior to
t = 3's, no actuator saturation occurs. In this time interval,
Designs 1 and 2 above produce exactly the same control
signals in accordance with Theorem 5. When the roll com-
mand is applied at=3 s, the left elevons saturate. In Design
1, this causes an overshoot in the pitch variablesdq.

In Design 2, the control allocator copes with the saturation
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Fig. 2. Aircraft trajectoryx (left) and control surface positions (right)

b_y redlstrlbut_lng as much of the lost control effect as pOS.- for control Design 1 (dashed) and Design 2 (solid). In Design 2, the
sible to the right elevons and to the canards. The result is control allocator redistributes the control effort whip saturates, thereby
that the nominal trajectory, without actuator constraints, iS preventing an overshoot in the angle of attagk,

almost completely recovered. Further simulation results can

be found inHarkegird (2003)

7. Conclusions Theoretically, this is an interesting result in itself since it
ties together two useful tools for resolving actuator redun-

In this paper, we have considered optimal control of a dancy. There are also practical implications. Given a full
class of overactuated nonlinear systems that are affine in theorder optimal control design, we have shown how to split
control input. The main result is that when the performance this into a new optimal control design with fewer inputs,
indexes are quadratic in the control, full order optimal con- governing the closed loop dynamics, and a control allocator,
trol design and reduced order optimal control design in com- distributing the control effort among the actuators. One of
bination with/,-optimal control allocation offer exactly the the benefits with a separate control allocator is that actua-
same design freedom in shaping the closed loop responseor constraints can be considered, so that when one actuator
and distributing the control effort among the actuators. An saturates, the remaining actuators can be used to make up
important special case is linear quadratic control design. for the loss of control effort, if possible.
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Appendix A. A matrix lemma

Lemma 6. Let A € R**™ have full row rank and leR
Rk be symmetric and positive definite. Then

X=ATRA+1-ATAAT) 1A (A.1)
is positive definite and has the inverse
X 1T=ATR AN + 71 - AT(AATH) 1A, (A.2)

Proof. Consider the matrix

g_[1+ATRA AT
- A AAT |°

Sincel + ATRA andAAT are both positive definite it holds
that Soderstrom & Stoica, 1989, Lemma A.3

S>>0 X>0&Y>0
with X given by (A.1) and with

Y = AAT — A(I + ATRA)1AT
=AAT(R1+ AAT)t4AT >0,

where we have used the matrix inversion formwhdng,
1999, p. 43

(I+CBD)*=1-cB*+DC)"'D. (A.3)

Hence,X is positive definite. The expression far—1 fol-
lows from (A.3) withB =1, C = AT(R — (AAT)™1), and
D=A. O
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