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Abstract

This paper considers actuator redundancy management for a class of overactuated nonlinear systems. Two tools for distributing the
control effort among a redundant set of actuators are optimal control design and control allocation. In this paper, we investigate the
relationship between these two design tools when the performance indexes are quadratic in the control input. We show that for a particular
class of nonlinear systems, they give exactly the same design freedom in distributing the control effort among the actuators. Linear
quadratic optimal control is contained as a special case. A benefit of using a separate control allocator is that actuator constraints can be
considered, which is illustrated with a flight control example.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Actuator or effector redundancy is one issue to be dealt
with when designing controllers for overactuated dynamic
systems. The terms actuator and effector are not used quite
consistently in the literature, but in, for example, flight con-
trol one could talk about actuators driving the control sur-
faces, which are the effectors of the aircraft. In our case
there is no need to distinguish between actuators and ef-
fectors since we merely assume that redundancy in any of
them leads to our mathematical formulation below. A com-
mon approach is to use optimal control design (Athans &
Falb, 1966; Bryson & Ho, 1975; Lewis & Syrmos, 1995) to
shape the closed-loop dynamics as well as the actuator con-
trol distribution in one step. For linear systems in particular,
methods like linear quadratic (LQ) control (Kwakernaak &
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Sivan, 1972; Anderson & Moore, 1989; Dorato, Abdallah,
& Cerone, 1995) andH∞ control (Zhou, Doyle, & Glover,
1996) are readily available.
An alternative is to separate the regulation task from the

control distribution task. With this strategy, the control law
specifies only the total control effort to be produced. The
distribution of control among the actuators is then decided by
a separatecontrol allocationmodule. The resulting control
configuration is illustrated inFig. 1. This strategy can be
found in several practical applications such as aerospace
control (Durham, 1993; Adams, Buffington, & Banda, 1994;
Virnig & Bodden, 1994; Shertzer, Zimpfer, & Brown, 2002)
and control of marine vehicles (Lindfors, 1993; SZrdalen,
1997; Johansen, Fossen, & Berge, 2004). Similar control
distribution concepts can also be found in biomechanical
muscle control (Thelen, Anderson, & Delp, 2003) and yaw
stability control for cars (Hattori, Koibuchi, & Yokoyama,
2002).
In this paper, we derive some connections between these

two strategies, i.e., between (a) using optimal control to de-
cide the control input directly, and (b) using optimal control
to decide the total control effort and then using control allo-
cation to compute the control input. We will study the case
when the performance indexes used in the optimal control
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Fig. 1. Control configuration when regulation and control allocation are
performed separately.

designs and in the control allocation are quadratic in the con-
trol input. This comparison is particularly interesting from a
flight control perspective since LQ control design (which is
contained as a special case) is a commonly used method to-
day (Gangaas, Bruce, Blight, & Ly, 1986; Stevens & Lewis,
1992; Amato, Mattei, & Scala, 1997; Balas, 2003) and con-
trol allocation is possibly becoming one (Hanson, 2002;
Balas, 2003). A related comparison between dynamic and
static optimization for computing the actuator control dis-
tribution can be found inAnderson and Pandy (2001).
The main result to be shown is that for a particular class

of overactuated nonlinear systems, the two design strategies
offer precisely the same design freedom. Given one design,
we show how to select the parameters of the other design to
obtain the same control law. We also motivate what benefits
a modular design—with a separate control allocator—offers.
In particular, actuator constraints can be handled in a po-
tentially better way, which is illustrated with a flight control
example.

2. Problem description

Consider a nonlinear system of the form

ẋ = a(x) + Bu(x)u, (1)

wherea(x) ∈ Rn,Bu(x) ∈ Rn×m, x(t) ∈ Rn is the state, and
u(t) ∈ Rm is the control input. Assume that rankBu(x) =
k <m ∀x, i.e., thatBu(x) does not have full column rank.
This implies thatBu(x) can be factorized as

Bu(x) = Bv(x)B(x), (2)

whereBv(x) ∈ Rn×k andB(x) ∈ Rk×m both have rankk.
This gives the alternative system description

ẋ = a(x) + Bv(x)v,

v = B(x)u, (3)

wherev(t) ∈ Rk can be interpreted as the total control effort
produced by the actuators. We will refer tov as thevirtual
control input.
Sincek <m,B (and alsoBu) has a nullspace of dimension

m − k in which u can be perturbed without affecting the
system dynamics. This means that there are several ways
to apportion the control among the actuators, all of which
make the system behave the same way. This is the type of
actuator redundancy that is typically considered in control
allocation applications.

Let us now consider two possible control designs for this
class of systems. In Design 1, an optimal control problem is
posed directly in terms ofu. In Design 2, an optimal control
problem is posed in terms ofv and the solution is then
mapped ontou using control allocation. Quadratic control
costs are used in both designs.

Design 1.Consider the system description(1). Determine
u(t) by solving

min
u(·)

∫ ∞

0
[q(x) + uTRu(x)u]dt, (4)

whereq(x)�0 andRu(x) = Ru(x)
T >0.

Design 2.Consider the system description(3). Determine
v(t) by solving

min
v(·)

∫ ∞

0
[q(x) + vTRv(x)v]dt, (5)

whereq(x)�0 and Rv(x) = Rv(x)
T >0. Then determine

u(t) by solving

min
u(t)

uTW(x)u,

subject to B(x)u = v, (6)

whereW(x) = W(x)T >0.

We will refer to (6) asl2-optimal control allocation. It is
straightforward to show that (6) has the solution

u = W(x)−1B(x)T(B(x)W(x)−1B(x)T)−1v. (7)

Both Designs 1 and 2 involve the solving of optimal control
problems. Design 2 can be computed by first calculating
V (x) from the Hamilton–Jacobi equation (8) below. The
optimal controlv(t) is then computed as a state feedback,
given by (9).

0= q(x) + Vx(x)a(x)

− 1
4Vx(x)Bv(x)Rv(x)

−1Bv(x)
TVx(x)

T, (8)

v = −1
2Rv(x)

−1Bv(x)
TVx(x)

T. (9)

For Design 1,Rv, Bv are replaced byRu, Bu, respectively.

Theorem 3. Let the Hamilton–Jacobi equation(8) have a
continuously differentiable solution withV (0) = 0 in some
open set� containing the origin. Assume that there exists
a setM ∈ � such that all solutions of(3), (9) starting in
M remain in� and converge to the origin. Then the value
of the criterion in(5) is V (xo) for a trajectory starting in
xo ∈ M. The control law(9) is optimal in the following
sense: Let v̄ be another control that generates a trajectory,
starting inxo, remaining in� and converging to the origin
whose value of the criterion in(4) is V̄ . ThenV̄ �V (xo).

Proof. This is a standard result in optimal control. A cor-
responding global theorem can be found in (Sepulchre,
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Janković, & Kokotović, 1997, Theorem 3.19) while the re-
striction to optimality on a set is discussed in (Leitmann,
1981, Chapter 15). �

3. Main result

We will now present the main results of the paper which
connect the solutions of Designs 1 and 2.

Theorem 4. Consider Designs1 and2 and assume that the
matricesRu andRv are related as

B(x)Ru(x)
−1B(x)T = Rv(x)

−1. (10)

Then the following holds.

• The Hamilton–Jacobi equations associated with De-
signs1 and2 will be identical. In particular, if one of
the problems has a solution satisfying the assumptions
of Theorem3, the other one will also and the optimal
costs in(4) and (5) are the same.

• If u∗ and v∗ are the optimal controls associated with
Designs1 and2, respectively, then

B(x)u∗ = v∗

and the corresponding x-trajectories are the same.

Proof. Let u∗ andv∗ be the optimal controls corresponding
to Designs 1 and 2, respectively. Herev∗ is computed from
(8), (9) whileu∗ is the solution of

0= q(x) + Vx(x)a(x)

− 1
4Vx(x)Bu(x)Ru(x)

−1Bu(x)
TVx(x)

T, (11)

u = −1
2Ru(x)

−1Bu(x)
TVx(x)

T. (12)

SubstitutingBu =BvB andBR−1
u BT=R−1

v into (11) shows
that (11) and (8) are in fact identical. Since

Bu∗ = −1
2BR−1

u BTBT
v V T

x = −1
2R

−1
v BT

v V T
x = v∗

implies Buu
∗ = Bvv

∗, the optimal trajectories will be the
same. �

This theorem does not answer the question whetheru
defined by (6) is equal to the optimalu of Design 1. That is
the subject of the next theorem.

Theorem 5. The control laws generated by Designs1 and
2 are the same in the following two cases.

• If, for givenRu, the matricesRv and W are chosen as

Rv(x) = [B(x)Ru(x)
−1B(x)T]−1,

W(x) = Ru(x). (13)

• If, for givenRv and W, the matrixRu is chosen as

Ru(x) = W(x) + B(x)T[Rv(x)

− (B(x)W(x)−1B(x)T)−1]B(x). (14)

Proof. According to Theorem 4 the virtual controls gener-
ated by the two designs as well as the associated optimal
costs are equal if (10) holds. Comparing (7), (9) with (12)
we see that the actual control laws generated are the same if

R−1
u BT = W−1BT(BW−1BT)−1R−1

v (15)

which is a stronger condition than (10). For givenRu, se-
lectingRv andWas in (13) clearly satisfies this relation. To
derive (14) we rewrite (15) as

X−1AT = AT(AAT)−1R−1
v = A†R−1

v ,

whereX=W−1/2RuW
−1/2,A=BW−1/2,W1/2 is the sym-

metric square root ofW, and the pseudoinverseA† satisfies
AA† = (A†)TAT = I . One solution is given by

X−1 = A†R−1
v (A†)T + I − AT(AAT)−1A

which according to Lemma 6 (see Appendix A) is positive
definite and has the inverse

X = ATRvA + I − AT(AAT)−1A.

In the original variables we get the sought expression

Ru = W1/2XW1/2

= W + BT[Rv − (BW−1BT)−1]B. �

3.1. A simple example

Consider the system

ẋ1 = x2, (16)

ẋ2 = −x31 + u1 + 2u2 (17)

with the optimization criterion∫ ∞

0

(
x41 + 1

2
x21 + x22 + u21 + 4u22

)
dt. (18)

Here, we have

Bu =
[
0 0
1 2

]
=

[
0
1

]
︸︷︷︸
Bv

[1 2]︸ ︷︷ ︸
B

(19)

so the Design 2 problem has the system

ẋ1 = x2, (20)

ẋ2 = −x31 + v, (21)

with criterion∫ ∞

0

(
x41 + 1

2
x21 + x22 + 1

2
v2

)
dt, (22)

where we have used

R−1
v = BR−1

u BT = [1 2]
[1 0

0
1

4

] [
1
2

]
= 2.
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The Hamilton–Jacobi equation becomes

0= x41 + 1

2
x21 + x22 + x2

�V
�x1

− x31
�V
�x2

− 1

2

(
�V
�x2

)2

and has the solution

V = 1
2x

4
1 + x21 + x1x2 + x22

with control law

v = − �V
�x2

= −x1 − 2x2.

The optimal control in terms ofu1 andu2 can now be cal-
culated from

min
u

(u21 + 4u22),

subject to u1 + 2u2 = −x1 − 2x2 (23)

with the resultu1 = −1
2x1 − x2, u2 = −1

4x1 − 1
2x2.

However, it is also possible to change the weighting of
u1 andu2 by solving

min
u

(�u21 + �u22),

subject to u1 + 2u2 = −x1 − 2x2 (24)

for arbitrary positive� and�. The solution is then

u1 = − �
4� + �

(x1 + 2x2), u2 = − 2�
4� + �

(x1 + 2x2)

showing that it is possible to shift the control effort between
u1 and u2. According to Theorem 5 all these choices are
optimal, corresponding to

Ru =
[
� + f (�,�) 2f (�,�)
2f (�,�) � + 4f (�,�)

]
,

f (�,�) = � + 4� − 2��
2� + 8�

and the same optimal costV (x). If �, � are chosen so that
�−1 + 4�−1 = 2 there is the simple relationRu = W .

4. The linear quadratic case

An important special case is when system (1) is linear
and the performance indexes are quadratic also in the state.
The optimal control problems (4) and (5) then reduce to
standard linear quadratic regulation (LQR) problems. This
occurs whena(x)=Ax, q(x)=xTQx whereQ�0, and the
matricesBu, Bv, B, Ru, Rv, andW are constant.
In this case, the Hamilton–Jacobi equation (8) has the

solutionV (x)= xTPx whereP solves the algebraic Riccati
equation

0= Q + ATP + PA − PBvR
−1
v BT

v P . (25)

If the pair (A,Bv) (or equivalently the pair(A,Bu)) is sta-
bilizable and the pair(A,Q) is detectable, then (25) has

a unique positive definite solutionP such that the optimal
control

v = −R−1
v BT

v Px

is asymptotically stabilizing (Kwakernaak & Sivan, 1972;
Anderson & Moore, 1989; Dorato et al., 1995). Hence, these
conditions certify that the assumptions in Theorem 3 hold
globally so that the conversion rules of Theorem 5 can be
applied to go from a unified Design 1 to a modular Design
2 or vice versa.

5. Discussion

Let us now discuss the implications of Theorems 4
and 5, relating optimal control design tol2-optimal control
allocation.
The main message is that the two approaches described

in Section 2 give the designer exactly the same freedom to
shape the closed-loop dynamics and to distribute the control
effort among the actuators. Given the design parameters of
one design, Theorem 5 states how the parameters of the
other design should be selected to achieve precisely the same
control law.
So why then split the control design into two separate

tasks? Let us list some benefits of using a modular control
design.

• Solving the Hamilton–Jacobi equation.In the nonlin-
ear case, the solution of the Hamilton–Jacobi equation
(8) usually has to be done numerically and can involve
heavy computations. However, ifRv is kept constant
andW is varied it is not necessary to recompute the so-
lution of (8), but it is still possible to change the weight-
ing of the different components ofu. The second part
of Theorem 5 shows that this can be done without los-
ing optimality with respect to the criterion in Design 1.
It is then possible to viewW in (14) as a parameteriza-
tion of matricesRu that have the same Hamilton–Jacobi
equation.

• Facilitates tuning.In Design 1, modifying an element
of the control input weighting matrix,Ru, will affect the
control distribution as well as the closed-loop behavior
of the system. In Design 2, the tuning of the closed loop
dynamics is separated from the design of the control
distribution.

• Easy to reconfigure.An actuator failure can sometimes
be modeled as a change in theB-matrix. In Design 2,
this only affects the control allocation. Hence, if the
failure is detected, the newB-matrix can be used for
control allocation, while the original virtual control law
can be kept, provided that the damaged system can still
be controlled.

• Arbitrary control allocation method.The condition in
Theorem 4 for the two approaches to give the same
x-trajectories does not involve the control allocator.
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Hence, if we selectRv as in (10), we can choose any
control allocation mappingu = h(v) in Design 2 such
thatBh(v)=v, without altering the closed loop dynam-
ics from Design 1. For a survey of control allocation
methods, see, e.g.,Bordignon (1996), Bodson (2002),
Härkegård (2003).

• Actuator constraints.With a separate control allocator,
actuator constraints can be handled to some extent. If
the control input is bounded byu�u(t)�u, the control
allocation problem in Design 2 can be reformulated as

u = argmin
u∈U

uTWu,

U = arg min
u�u�u

(Bu − v)TWv(Bu − v). (26)

GivenU, the set of feasible control inputs that minimize
‖Bu − v‖Wv , we pick the control input that minimizes
‖u‖W . In this way, the control capabilities of the actu-
ator suite can be fully exploited before the closed loop
performance is degraded. Also, whenBu = v is not at-
tainable due to the constraints,Wv allows the designer to
prioritize between the components of the virtual control
input. The optimization problem (26) can be efficiently
solved using, e.g., active set methods (Härkegård, 2002)
or interior point methods (Petersen & Bodson, 2003).

Remark. It should be stressed that including the constraints
in the control allocation is not equivalent to the more com-
plex problem of including the constraints in the optimal con-
trol problem in Design 1. This requires the constraints to
be considered for all future times. With constrained control
allocation the constraints are only considered pointwise in
time which can be viewed as a “poor man’s constrained op-
timal control strategy”.

Apparently, a modular design has several potential bene-
fits. Unfortunately, not all systems with more actuators than
controlled variables display the type of redundancy that can
be resolved using control allocation. In some cases however,
proper model approximations can be made to achieve mod-
ularity, as we will see in the design example in the following
section.

6. Flight control example

To investigate the potential benefits of a modular optimal
control design we use a flight control example based on
the ADMIRE model (ADMIRE ver. 3.4h, 2003; Backström,
1997). ADMIRE describes a small single engine fighter with
a delta-canard configuration. To induce actuator saturations,
we consider a low-speed flight case, Mach 0.22, altitude
3000m, where the control surface efficiency is poor.

6.1. Aircraft model

The linearized aircraft model is given by

x = [� � p q r]T − xlin ,

y = [� � p]T − ylin ,

� = [�c �re �le �r ]T − �lin ,
u = [uc ure ule ur ]T − ulin ,[

ẋ

�̇

]
=

[
A Bx

0 −B�

] [
x

�

]
+

[
0
B�

]
u, (27)

where� = angle of attack,� = sideslip angle,p = roll rate,
q=pitch rate, andr=yaw rate are the aircraft state variables
(see, e.g.,Stevens & Lewis (1992)), � and u contain the
actual and the commanded deflections of the canard wings,
the right and left elevons, and the rudder, respectively, and
xlin , ylin , etc. are the points of linearization. The control
surfaces are limited by

�c ∈ [−55,25] · �
180

, �re, �le, �r ∈ [−30,30] · �
180

and have first-order dynamics with a time constant of 0.05 s
corresponding toB� = 20I . For the considered flight case,

A =




−0.5432 0.0137 0 0.9778 0
0 −0.1179 0.2215 0 −0.9661
0 −10.5128 −0.9967 0 0.6176

2.6221 −0.0030 0 −0.5057 0
0 0.7075 −0.0939 0 −0.2127


 ,

Bx =



0.0069 −0.0866 −0.0866 0.0004

0 0.0119 −0.0119 0.0287
0 −4.2423 4.2423 1.4871

1.6532 −1.2735 −1.2735 0.0024
0 −0.2805 0.2805 −0.8823


 .

For this system, rankB� = k = m = 4. Hence, although the
number of effectors exceeds the number of controlled vari-
ables (dimy = 3), the redundancy is not in a form that can
be exploited using control allocation. Let us therefore make
the two following approximations:

• The actuator dynamics are neglected, i.e.,�=u is used.
• The control surfaces are viewed as pure moment gener-
ators and their influence oṅ� and �̇ is neglected. This
corresponds to zeroing the two top rows ofBx .

This gives the approximate model

ẋ = Ax + Buu = Ax + Bvv,

v = Bu, (28)

where

Bu = BvB, Bv =
[
02×3
I3×3

]

andB contains the last three rows ofBx which meansk=3.
The resulting virtual control input,v = Bu, contains the
angular accelerations in roll, pitch, and yaw produced by the
control surfaces.
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6.2. Control design

Let us investigate two different control strategies:

(1) Standard LQ design for the approximate model (28)
with weighting matricesQ, Ru.

(2) LQ design andl2-optimal control allocation for the ap-
proximate model (28) with weighting matricesQ, Rv,
andW. To handle actuator position constraints, the ex-
tended control allocation formulation (26) is used.

The weighting matricesQ andRu are selected as

Q = diag(10,10,2,1,10),

Ru = diag(10,10,10,10)

to achieve desirable characteristics of the short period mode
of the aircraft, the dutch roll mode, and the roll mode. For
the second design,Rv andWare selected according to (13).
The matrixWv in (26) is selected as

Wv = diag(1,1,20)

to prioritize the yawing moment in order to maintain a low
sideslip angle,�.
To achieve set-point regulation aroundy=yref rather than

aroundx = 0, the LQ control laws foru and v are aug-
mented with a feedforward term from the referenceyref, see
Härkegård (2003), Chapter 10.

6.3. Simulation results

Fig. 2 shows the simulation results for the two control
designs applied to the original linear model (27). Prior to
t = 3 s, no actuator saturation occurs. In this time interval,
Designs 1 and 2 above produce exactly the same control
signals in accordance with Theorem 5. When the roll com-
mand is applied att=3 s, the left elevons saturate. In Design
1, this causes an overshoot in the pitch variables� andq.
In Design 2, the control allocator copes with the saturation
by redistributing as much of the lost control effect as pos-
sible to the right elevons and to the canards. The result is
that the nominal trajectory, without actuator constraints, is
almost completely recovered. Further simulation results can
be found inHärkegård (2003).

7. Conclusions

In this paper, we have considered optimal control of a
class of overactuated nonlinear systems that are affine in the
control input. The main result is that when the performance
indexes are quadratic in the control, full order optimal con-
trol design and reduced order optimal control design in com-
bination withl2-optimal control allocation offer exactly the
same design freedom in shaping the closed loop response
and distributing the control effort among the actuators. An
important special case is linear quadratic control design.
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Fig. 2. Aircraft trajectoryx (left) and control surface positions� (right)
for control Design 1 (dashed) and Design 2 (solid). In Design 2, the
control allocator redistributes the control effort when�le saturates, thereby
preventing an overshoot in the angle of attack,�.

Theoretically, this is an interesting result in itself since it
ties together two useful tools for resolving actuator redun-
dancy. There are also practical implications. Given a full
order optimal control design, we have shown how to split
this into a new optimal control design with fewer inputs,
governing the closed loop dynamics, and a control allocator,
distributing the control effort among the actuators. One of
the benefits with a separate control allocator is that actua-
tor constraints can be considered, so that when one actuator
saturates, the remaining actuators can be used to make up
for the loss of control effort, if possible.



O. Härkegård, S.T. Glad / Automatica 41 (2005) 137–144 143

Acknowledgements

This work has been supported by the Swedish Research
Council.

Appendix A. A matrix lemma

Lemma 6. Let A ∈ Rk×m have full row rank and letR ∈
Rk×k be symmetric and positive definite. Then

X = ATRA + I − AT(AAT)−1A (A.1)

is positive definite and has the inverse

X−1 = A†R−1(A†)T + I − AT(AAT)−1A. (A.2)

Proof. Consider the matrix

S =
[
I + ATRA AT

A AAT

]
.

SinceI +ATRA andAAT are both positive definite it holds
that (Söderström & Stoica, 1989, Lemma A.3)

S >0 ⇔ X >0 ⇔ Y >0

with X given by (A.1) and with

Y = AAT − A(I + ATRA)−1AT

= AAT(R−1 + AAT)−1AAT >0,

where we have used the matrix inversion formula (Zhang,
1999, p. 43)

(I + CBD)−1 = I − C(B−1 + DC)−1D. (A.3)

Hence,X is positive definite. The expression forX−1 fol-
lows from (A.3) withB = I , C = AT(R − (AAT)−1), and
D = A. �
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