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A backstepping design for an aircraft described by rigid body dynamics is proposed.

The system states are the unit velocity vector and the angular velocity in a body-fixed

coordinate system. The result can be viewed as a multi-variable controller for angle of

attack, sideslip angle, and velocity vector roll rate. The backstepping design is performed

on the rigid body dynamics described on vector form. The resulting controller achieves

convergence to a desired state from almost all starting points. Guidelines are given for

tuning the controller to affect the characteristics of the short period mode, the roll mode

and the dutch roll mode. A coupled high angle of attack, high roll rate maneuver is

simulated using a simplified aircraft model to illustrate the design.

Nomenclature

V Velocity vector (body-fixed)

V̂ Velocity direction
|V | Total velocity
ω Angular velocity vector (body-fixed)
α Angle of attack
β Angle of sideslip
F External force
M External torque
m Mass, kg
J Inertia matrix, kg·m2

V̂o Reference velocity direction
λ Reference velocity vector roll rate
W Control Lyapunov function
K1, K2 Control design matrices

I. Introduction

An important tool for nonlinear control synthesis is backstepping.1–3 The idea is to extend a Lyapunov
function from a simple system to systems involving additional state variables and at the same time design
the feedback control to guarantee stability.

The purpose of the present paper is to design control laws for a rigid aircraft using backstepping tech-
niques. Backstepping has previously been used to control different types of rigid bodies such as spacecraft,4

helicopters,5 marine vessels,6 and mobile robots.7 In these papers the controlled variables are the orientation
and in some cases also the position of the rigid body. In this paper we consider control of the translational
and angular velocities expressed in a body-fixed coordinate system. We will consider motions in three di-
mensions whereas the designs in ref. 6, 7 consider motions in two dimensions. Further, our model includes
external forces, such as aerodynamic or hydrodynamic forces, which is not done in ref. 4, 5, 7.

Current nonlinear designs for flight control often rely on feedback linearization,8–10 see, e.g., ref. 11–15.
In these papers the aircraft model used for control design is described on component form, i.e., in terms of
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individual state variables such as angle of attack, sideslip angle, pitch rate, roll rate, and yaw rate. A key
feature of this paper is that backstepping is applied directly the rigid body dynamics expressed on vector
form.

The remainder of this paper is organized as follows. In Section II the rigid body aircraft model used for
control design is described. Backstepping control design is performed in Section III. This section also contains
stability analysis of the resulting closed loop dynamics and some tuning guidelines. The proposed control
law is applied to a simple nonlinear aircraft model in Section IV and conclusions are made in Section V.

II. Aircraft dynamics

Let the aircraft be a rigid body with mass m and moment of inertia J . To describe its motion we use a
body fixed coordinate system with the origin at the center of mass. The aircraft dynamics is then given by

mV̇ = −ω × mV + F

Jω̇ = −ω × Jω + M
(1)

where V is the velocity and ω is the angular velocity. F is the external force resulting from gravity, aerody-
namics and engine thrust. M is the external torque due to aerodynamics and possibly also engine thrust.

Assume now that V 6= 0. Then the velocity vector may be uniquely written as

V = |V |V̂ (2)

where |V | is the total velocity and V̂ has unit length and represents the velocity direction relative to the
body. The unit velocity vector can be parameterized as

V̂ =
(
cos α cos β sinβ sin α cos β

)T
(3)

where α is the angle of attack of the aircraft and β is the sideslip angle.16 In many applications |V | and
V̂ are controlled independently of each other. In modern fighter aircraft, such as JAS 39 Gripen, the pilot
controls the total velocity |V | by varying the engine thrust, while control of the angle of attack and the
sideslip angle (and hence V̂ ) is performed by a flight control system with pilot stick and pedal positions as
inputs. It is therefore of interest to model the dynamics of these entities separately.

The dynamics of the total velocity |V | can be derived from the relationship |V |2 = V T V . Differentiating
with respect to time and dividing by 2|V | yields

d

d t
|V | =

V T V̇

|V |
=

1

m
V̂ T F (4)

The dynamics of the velocity direction V̂ can be derived by differentiating the relationship V̂ = V/|V |. After
some manipulations, including the use of the relationship

F = (V̂ T F )V̂ + (V̂ × F ) × V̂ (5)

this gives

˙̂
V =

V̇

|V |
−

V

|V |2
d

d t
|V | =

[

−ω +
1

m|V |
V̂ × F

]

× V̂ (6)

This equation can be viewed as a description of the angle of attack and sideslip dynamics on vector form.
Now assume that the force has the form

F = F (V, t)

The dependence on V captures the influence from total velocity, angle of attack and sideslip angle on
the aerodynamic forces. The dependence on time captures the force contributions from gravity (attitude
dependent) and engine thrust if these are viewed as time dependent but known entities. To facilitate the
upcoming backstepping design we assume that the force is independent of the angular velocity ω and the
available control effectors.
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The torque M may depend on, e.g., V , ω, and available control effectors. In this paper we will consider
the total torque as a control variable. To emphasize this we introduce uM = M . Transforming a torque
command into individual control effector commands is the control allocation problem17–19 which will not be
dealt with here.

In this paper we assume that control of the total velocity |V | is performed by the pilot or some other
device and instead focus on the remaining aircraft dynamics. Hence the relevant dynamics are described by

˙̂
V =

[

−ω +
1

m|V |
V̂ × F (V, t)

]

× V̂ (7)

Jω̇ = −ω × Jω + uM (8)

Let us now investigate what stationary motions are possible for these dynamics. Consider a motion with
V̂ = V̂o where V̂o is a constant unit vector. This corresponds to a motion with α = αo, β = βo if αo, βo and
V̂o are related as in (3). Inserting this into the velocity equation (7) gives the angular velocity solution

ω =
1

m|V |
V̂o × F (|V |V̂o, t) + λV̂o (9)

where λ is an arbitrary scalar.
We see that the angular velocity is uniquely determined by V̂o up to the term λV̂o which represents a

rotation around the velocity vector with angular rate ωT V̂o = γ, which is the velocity vector roll rate. This
angular velocity can be achieved by applying the torque

uM = Jω̇ + ω × Jω

according to equation (8).

III. Backstepping control design

In this section we develop a backstepping control design for the model (7)–(8) to steer the velocity
direction V̂ towards a reference direction V̂o and the velocity vector roll rate ωT V̂ towards a reference roll
rate λ. The result is a controller which makes

V̂ = V̂o

ω =
1

m|V |
V̂o × F (|V |V̂o, t) + λV̂o

(10)

an asymptotically stable equilibrium for all starting points outside an exceptional set of lower dimension.

A. Backstepping

Step 1: We start by considering only the velocity dynamics (7). In the standard backstepping manner we
regard ω as a virtual control variable and construct a desired angular velocity ωd that steers V̂ towards V̂o.
Consider the control Lyapunov function

W1 =
1

2
(V̂ − V̂o)

T (V̂ − V̂o)

which satisfies

Ẇ1|ω=ωd
=

[

ωd −
1

m|V |
V̂ × F (V, t)

]T

(V̂ × V̂o)

We now design a virtual control law ω = ωd to make W1 a decreasing function of time. A possible choice is

ωd =
1

m|V |
V̂ × F (V, t) + λV̂ − K1(V̂ × V̂o)

where K1 = KT
1 > 0. The first terms acts to cancel the effects of the time varying force nonlinearity F (V, t).

The second term corresponds to our desire to achieve a velocity vector roll rate of λ. Note that this term
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could be replaced by a term λV̂o without affecting Ẇ1|ω=ωd
. It seems more natural however to desire a

rotation around the current velocity vector V̂ rather than around the steady state velocity vector V̂o. The
third term of ωd adds stability to the V̂ dynamics at the desired equilibrium.

This choice of virtual control law leads to

Ẇ1|ω=ωd
= −(V̂ × V̂o)

T K1(V̂ × V̂o) < 0, V̂ 6= ±V̂o

Note that Ẇ1|ω=ωd
= 0 holds not only at the desired equilibrium V̂ = V̂o but also at V̂ = −V̂o.

Step 2: Backstepping through the model (7)–(8) our next task is to design a torque control uM that
steers ω towards ωd in such a way that the entire system is stabilized around the desired equilibrium (10).
Introduce the residual

ω̃ = ω − ωd

and the new control variable
ūM = −ω × Jω + uM

We now have the dynamics

˙̂
V = (−ω̃ + K1(V̂ × V̂o)) × V̂

J ˙̃ω = −Jω̇d + ūM

To penalize the angular velocity residual ω̃ we use the extended control Lyapunov function

W =
c

2
(V̂ − V̂o)

T (V̂ − V̂o) + ω̃T Jω̃

where c > 0, which satisfies

Ẇ = c(V̂ − V̂o)
T
[
(−ω̃ + K1(V̂ × V̂o)) × V̂

]
+ ω̃T (−Jω̇d + ūM )

= −c(V̂ × V̂o)
T K1(V̂ × V̂o) + ω̃T (cV̂ × V̂o − Jω̇d + ūM )

Here we have used the cross product relationship aT (b× c) = bT (c× a). To make Ẇ negative we can choose
the control

ūM = −K2ω̃ + Jω̇d (11)

where K2 = KT
2 > 0 gives

Ẇ = −c(V̂ × V̂o)
T K1(V̂ × V̂o) + cω̃T (V̂ × V̂o) − ω̃T K2ω̃

= −c(K1(V̂ × V̂o) −
1
2
ω̃)T K−1

1 (K1(V̂ × V̂o) −
1
2
ω̃)

− ω̃(K2 −
c
4
K−1

1 )ω̃ ≤ 0

if K2 −
c
4
K−1

1 > 0. This condition can be met for all K1 > 0, K2 > 0 by selecting c small enough. Since

K2 −
c
4
K−1

1 ≥ [σ(K2) −
c

4
σ(K1)

−1]I3×3

a sufficient condition on c is
0 < c < 4σ(K1)σ(K2)

Further, Ẇ = 0 requires ω̃ = 0 and V̂ = ±V̂o. Let us summarize out backstepping design.

Proposition 1 Consider the aircraft dynamics (7)–(8) and the torque control law

uM = −K2(ω − ωd) + Jω̇d + ω × Jω (12)

where

ωd = −K1(V̂ × V̂o) + γV̂ +
1

m|V |
V̂ × F (V, t) (13)

and where K1 = KT
1 > 0, K2 = KT

2 > 0. Assume that some mechanism keeps the velocity magnitude |V |
bounded from below and from above. Then the above control law is well defined. A Lyapunov function for
the closed loop system is given by

W =
c

2
(V̂ − V̂o)

T (V̂ − V̂o) +
1

2
(ω − ωd)

T J(ω − ωd) (14)

where c > 0 can be selected so that Ẇ < 0 except at the two points V̂ = ±V̂o, ω = ωd.
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B. Stability analysis

Applying the torque control (12) gives the closed loop dynamics

˙̂
V = (−ω̃ + K1(V̂ × V̂o)) × V̂ (15a)

J ˙̃ω = −K2ω̃ (15b)

in terms of the velocity direction V̂ and the angular velocity residual ω̃. We note that the force term F (V, t)
is no longer present but has been cancelled using feedback. This term is thus treated the same way it would
be treated using feedback linearization. However, unlike feedback linearization the closed loop system above
is still nonlinear. This is due to the treatment of the Coriolis force term, which appears also in the closed
loop dynamics. We can further note that the dynamics does not depend on the total velocity |V |.

The two points that were shown to achieve Ẇ = 0 in the previous section (V̂ = ±V̂o and ω̃ = 0)
both correspond to equilibria of this system. From the invariance principle10 we know that the system will
approach either of these two equilibria as t → ∞. The following stability result holds.

Proposition 2 Let the assumptions of Proposition 1 be satisfied. Trajectories starting at any initial value
will then converge to one of the equilibria V̂ = V̂o, ω = ωd or V̂ = −V̂o, ω = ωd. If the initial value satisfies

W (V̂ (0), ω(0)) < 2c (16)

the convergence is always to V̂ = V̂o, ω = ωd.

Proof 1 The level set
W (V̂ , ω) ≤ W (V̂ (0), ω(0)) (17)

is bounded for any initial condition V̂ (0), ω(0). It then follows from standard Lyapunov theory,10 that the
system state will converge to a set in (17) where Ẇ = 0, i.e. one of the equilibria V̂ = V̂o, ω = ωd or
V̂ = −V̂o, ω = ωd (Proposition 1). Since W (−V̂o, ωd) = 2c the level set (17) contains only the equilibrium
V̂ = V̂o, ω = ωd if (16) is satisfied.

The proposition shows that the backstepping control law achieves local asymptotic stability of the desired
equilibrium V̂ = V̂o, ω = ωd. Global asymptotic stability cannot be achieved due to the additional equilib-
rium point V̂ = −V̂o, ω = ωd.

C. Linearized dynamics

In this section we further investigate the local stability characteristics of the two equilibria. We do this by
linearizing the closed loop dynamics (15) at the two equilibria V = ±Vo, ω̃ = 0. To handle differentiation of
cross products we introduce the notation

a × b = S(a)b, S(a) =






0 −a3 a2

a3 0 −a1

−a2 a1 0




 (18)

where S is skew-symmetric, i.e., ST = −S. This leads to the differentiation rules

∂

∂b
a × b = S(a),

∂

∂a
a × b = ST (b)

∂

∂a
f(a) × g(a) = S(f)

∂g

∂a
+ ST (g)

∂f

∂a

(19)

Applying these rules gives the following linearized dynamics around V̂ = −V̂o, ω̃ = 0:

d

d t

[

V̂ + V̂o

ω̃

]

=

[

ST (V̂o)K1S(V̂o) −S(V̂o)

0 −J−1K2

][

V̂ + V̂o

ω̃

]

(20)
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The poles of this system are given by the eigenvalues of the submatrices A = ST (V̂o)K1S(V̂o) and −J−1K2.
The maximum eigenvalue of A satisfies

λmax(A) ≥ x̂T Ax̂ = (V̂o × x̂)T K1(V̂o × x̂) > 0, x̂ 6= ±V̂o

This shows that the linearization (20) has at least one unstable pole. Using Lyapunov’s indirect method,10

this implies that V̂ = −V̂o, ω̃ = 0 is an unstable equilibrium point of the nonlinear system (15). Hence there
will only be a small exceptional set (the stable manifold of the equilibrium) from which convergence to that
point is possible.

Similarly, the linearized dynamics around V̂ = V̂o, ω̃ = 0 becomes

d

d t

[

V̂ − V̂o

ω̃

]

=

[

−ST (V̂o)K1S(V̂o) S(V̂o)

0 −J−1K2

][

V̂ + V̂o

ω̃

]

(21)

This system can be shown to have one pole at the origin, which reflects that V̂ only has two degrees of
freedom since its magnitude does not change. The remaining poles are real and strictly negative. This is a
limitation of the proposed design since it means that the short period mode, for example, cannot be assigned
complex valued poles.

Let us now further investigate how the design matrices K1 and K2 affect the closed loop behavior. To this
end, we parametrize the velocity direction vector as in (3) and introduce the angular velocity components
ω̃ = (p̃ q̃ r̃)T . Considering the common case βo = 0, i.e., zero desired sideslip, and selecting the controller
parameters as

K1 = diag(kβ , kα, kβ)

K2 = J · diag(kp, kq, kr)
(22)

we can rewrite the closed loop velocity direction dynamics (15a) as

α̇ = −[kα cos β + kβ(cos−1 β − cos β)] sin(α − αo)

+ q̃ − tan β(r̃ sin α + p̃ cos α)

β̇ = −kβ cos(α − αo) sin β − r̃ cos α + p̃ sin α

Linearizing the dynamics around α = αo, β = 0, ω̃ = 0 gives the following decoupled longitudinal and lateral
dynamics:

d

d t

[

α − αo

q̃

]

=

[

−kα 1

0 −kq

][

α − αo

q̃

]

(23)

d

d t






β

p̃

r̃




 =






−kβ sin αo − cos αo

0 −kp 0

0 0 −kr











β

p̃

r̃




 (24)

The poles of these systems are given by the negative of the controller parameters kα, kβ , kp, kq, and kr.
These parameters can be tuned by the user to affect the dynamics of the short period mode, the roll mode
and the dutch roll mode.

As discussed above, the poles become real independently of the design parameters. This is due to that
the lower triangular parts of the system matrices above are zero. In the backstepping design, this can be
traced back to the design choice made in (11) where the term Jω̇d is cancelled by the control. A possible
extension of this work is to investigate if other choices could be made that would allow for less restrictive
pole placements.

IV. Flight control example

In this section we illustrate our backstepping design using a simple flight control example.
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A. Aircraft model

A simplified version of the ADMIRE fighter aircraft model20,21 is used for simulation. The main reason for
not using the full ADMIRE model is to have the total torque as a control input, rather than the individual
control effectors, so that the model can be written as in (7)–(8).

Consider a body-fixed coordinate system with axes pointing forward, over the right wing and down. Let
the aircraft mass and moment of inertia be given by

m = 9100 kg, J =






21000 0 −2500

0 81000 0

−2500 0 101000




 kg·m2

Let the force F in (7) be given by

F (V, t) = q̄SCF (α, β)
︸ ︷︷ ︸

aerodynamics

+mg(θ(t), φ(t))
︸ ︷︷ ︸

gravity

+FT (t)n̂
︸ ︷︷ ︸

engine

The aerodynamic term is defined by the wing planform area S = 45 m2, the dynamic pressure q̄ and the
aerodynamic force coefficients CF . The gravitational term depends on the pitch angle θ(t) and the roll
angle φ(t) of the aircraft. The last term models the effect of an engine producing a thrust force FT in the
body-fixed direction n̂ = (1 0 0)T . For the aerodynamic force coefficients we use the simple model

CF (α, β) = −diag(0.012, 0.70, 3.5)V̂

which has been tuned to resemble the ADMIRE aerodata at low angles of attack. The resulting lift force, side
force, and drag force coefficients are shown in Fig. 1. The model captures the basic characteristics of these
forces but neglects, for example, the contributions from the angular velocity ω and from the control effectors.
However, these contributions are typically small and are often disregarded in nonlinear flight control designs.
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−
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Figure 1. Aerodynamic coefficients for the lift force, side force, and drag force.

B. Controller

To control the aircraft we use the control law in Proposition 1. We select K1 and K2 as in (22) with
kα = kβ = 2, kp = kq = kr = 2.5 to obtain reasonable characteristics of the short period mode, the roll
mode, and the dutch roll mode.

Implementing the control law (12) is straightforward except for the term Jω̇d which requires the expression
for ωd to be differentiated with respect to time. In the current implementation, the first two terms of ωd are
differentiated analytically (considering V̂o and λ as constants) while the last term is differentiated numerically
online.
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Figure 2. Simulated high angle of attack, high roll rate maneuver.
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Figure 3. Aircraft variables (angle of attack α, sideslip angle β, velocity vector roll rate ωV , total velocity |V |)
and controls (torque vector uM).
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C. Simulations

To illustrate the control laws, a coupled high angle of attack, high roll rate maneuver performed at Mach
0.3, altitude 5000 m is simulated. The maneuver is illustrated in Fig. 2 and plots are shown in Fig. 3. The
engine force is held constant at FT = 40 kN.

Initially, a 25 deg angle of attack command is issued, followed by a 60 deg/s velocity vector roll command
after 2 seconds. These commands are sustained throughout a 360 deg roll after which both commands are
released.

Good response decoupling is achieved throughout the maneuver, the maximum sideslip is less than 0.4
deg. This is of course due to the ideal circumstances for the simulation – perfect measurements, no actuator
dynamics, same dynamics used for control design and aircraft simulation, perfect feedforward from roll
command to yawing moment etc. Hence, the sideslip that actually does occur is a characteristic of the
design. The way the control law steers V̂ towards V̂o does not result in perfect decoupling between α and β
even in theory.

V. Conclusions

We have proposed a control law that steers the unit velocity vector and the angular velocity vector (both
expressed in a body-fixed coordinate system) of a rigid aircraft to desired values. This can be interpreted as
a multi-variable controller for the angle of attack, the sideslip angle, and the velocity vector roll rate, that
takes the interaction between these variables automatically into account. The controller achieves convergence
to the desired equilibrium from almost all starting points.

A linear analysis showed that the closed loop dynamics, corresponding to the short-period mode, the roll
mode, and the dutch roll mode, can be assigned arbitrary but real poles. A possible extension of the present
work is to investigate if this restriction can be relaxed by making different choices in the backstepping design
process.

References
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3Sepulchre, R., Janković, M., and Kokotović, P. V., Constructive Nonlinear Control , Springer, Berlin, 1997.
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