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Control allocation deals with the problem of distributing a given control de-
mand among an available set of actuators. Most existing methods are static in
the sense that the resulting control distribution depends only on the current con-
trol demand. In this paper we propose a method for dynamic control allocation,
in which the resulting control distribution also depends on the distribution in
the previous sampling instant. The method extends the traditional generalized
inverse method by also penalizing the individual actuator rates. Its main feature
is that it allows for different control distributions during the transient phase of
a maneuver and during trimmed flight. The control allocation problem is posed
as a constrained quadratic programming problem which provides automatic re-
distribution of the control effort when one actuator saturates in position or in
rate. When no saturations occur, the resulting control distribution coincides with
the control demand fed through a linear filter which can be assigned different
frequency characteristics for different actuators.

1 Introduction

In recent years, nonlinear flight control design
methods, like dynamic inversion1 and backstep-
ping,2 have gained increased attention. These
methods result in control laws specifying the mo-
ments, or angular accelerations, to be produced in
pitch, roll, and yaw, rather than which particu-
lar control surface deflections to produce. How to
transform these “virtual” control commands into
physical control commands is known as the control
allocation problem.

With a redundant actuator suite there are sev-
eral combinations of actuator positions which all
give (almost) the same overall system behavior. A
common approach is to pick the combination that
minimizes, e.g., control deflections, drag, wing
load, or radar signature.3–7 In this paper we
will use the redundancy to let different actuators
produce control effort in different parts of the fre-
quency spectrum. We will refer to this as dynamic
control allocation.

Such frequency division may be desirable for at
least two reasons. First, an actuator can be as-
signed a frequency range according to its intended
operational use, e.g., for high, low, or midrange
frequencies. Second, the high frequency control
distribution, affecting the initial aircraft response
to a pilot command, can be tuned without affect-
ing the steady state control distribution, which
may be designed to minimize, e.g., drag.

The remainder of this paper is organized as fol-
lows. In Section 2 the aircraft and actuator models
to be used are introduced and motivated. Sec-

tion 3 discusses the differences between static and
dynamic allocation. The proposed control allo-
cation method is presented in Section 4 and its
properties, for the case when no actuator satura-
tions occur, are analyzed in Section 5. A design
example can be found in Section 6, and Section 7
contains some concluding remarks.

2 Aircraft Model
Let the aircraft dynamics be given by

ẋ = f(x, δ)

δ̇ = g(δ, u)

where x = aircraft state vector, δ = actuator posi-
tions, and u = actuator inputs. To incorporate the
actuator position and rate constraints we impose
that

δmin ≤ δ ≤ δmax (1a)∣∣δ̇∣∣ ≤ δrate (1b)

where δmin and δmax are the lower and upper po-
sition constraints, and δrate specifies the maximal
individual actuator rates.

Even in the case when f and g are linear, it is
nontrivial to design a control law which gives the
desired closed loop dynamics while assuring that
the actuator constraints are met. A common ap-
proach is to split the design task into two subtasks.
To do this, we first use the fact that typically,
control surface deflections primarily produce aero-
dynamic moment, M(x, δ). Second, the actuator
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dynamics are often very fast compared to the re-
maining aircraft dynamics, and can therefore be
neglected. This gives us

δ ≈ u
ẋ ≈ fM (x,M(x, u))

The control design can now be performed in two
steps as follows. First, design a control law

M(x, u) = k(r, x) (2)

where r = pilot command, that yields some de-
sired closed loop dynamics,

ẋ = fM (x, k(r, x))

Second, determine u, constrained by (1) (with δ =
u), that satisfies (2).

The latter step is the control allocation step.
Since modern aircraft use digital flight control sys-
tems we rewrite (1b) in discrete time as

∣∣u̇∣∣ ≈ ∣∣u(t)− u(t− T )
∣∣

T
≤ δrate

to get the overall position constraints at time t,

u(t) ≤ u(t) ≤ u(t) (3)

where

u(t) = max{δmin, u(t− T )− δrateT}
u(t) = min{δmax, u(t− T ) + δrateT}

and T is the sampling time. To simplify the search
for a feasible solution we will assume the aerody-
namic moment to be affine in the controls. This
gives us

M(x, u) = B(x)u+ c(x) = k(r, x) (4)

or, equivalently,

Bu(t) = v(t) (5)

where
v(t) = k(r, x)− c(x) (6)

is the virtual control input. Now, to perform on-
line control allocation we need to find a feasible
solution u(t) at each sampling instant, satisfying
(3) and (5). Figure 1 shows the structure of the
resulting closed loop system.

r
Feedback

law
Control

allocation
Aircraft

x

uv

Fig. 1 Overview of the modular controller structure.

3 Static vs Dynamic Control Allocation
Several control allocation methods, like direct

control allocation,8 daisy chaining,9 redistributed
pseudoinverse,3 and methods based on constrained
quadratic10,11 or linear7 programming, have been
proposed in the literature, see ref. 12 for a survey.
A common denominator for all these methods is
that they are static in the sense that the physi-
cal control commands computed at time t, only
depend on the virtual control commands at that
time, i.e.,

u(t) = f
(
v(t)

)
Using a static mapping, no frequency division
can be made between the actuators. To obtain
a frequency division, and let different actuators
produce control effort in different parts of the fre-
quency spectrum, we need to use a dynamic map-
ping of the form

u(t) = f
(
v(t),u(t− T ), v(t− T ),

u(t− 2T ), v(t− 2T ), . . .
)

With a dynamic mapping, the high frequency con-
trol distribution, affecting the initial aircraft re-
sponse to a pilot command, and the low frequency
control distribution, determining the distribution
at steady state, need not be the same. Using static
control allocation, on the other hand, a trade-off
has to be made between good initial behavior and,
e.g., low drag at trimmed flight.

In the following sections we will develop a strat-
egy for performing dynamic control allocation us-
ing constrained quadratic programming. When no
actuators saturate the relationship between u and
v will be given by a first order linear filter of the
form

u(t) = Fu(t− T ) +Gv(t)

Previous efforts in this direction include ref. 13,
where the required pitching moment is distributed
to the tailerons through a low-pass filter and
to the canard wings through a high-pass filter.
This is motivated by the desire to get a fast ini-
tial response, produced by the canards, while the
tailerons are known to produce more pitching mo-
ment, and are therefore used to generate the re-
quired moment at steady state.
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The difference between our approach and ref. 13
is twofold.

• To handle constraints on actuator positions
and rates, we will perform the control alloca-
tion within a constrained quadratic program-
ming framework. This ensures that (5) is
satisfied whenever possible, since the control
effort is redistributed when one actuator sat-
urates.

• In a complex situation, where the number of
moment generators is large, it is not an easy
task to explicitly design the frequency distri-
bution among the actuators while ensuring
that (5) is satisfied. We propose the use of
weighting matrices to affect the distribution
of control effort, in size as well as in frequency,
among the actuators.

4 Dynamic Control Allocation Using QP
The control allocation algorithm that we pro-

pose can be formulated as a linearly constrained
quadratic programming problem:

min
u(t)

∥∥W1(u(t)− us(t))
∥∥2

2
+∥∥W2(u(t)− u(t− T ))
∥∥2

2

(7a)

Bu(t) = v(t) (7b)
u(t) ≤ u(t) ≤ u(t) (7c)

Equation (7a) is the cost function to be mini-
mized under the linear constraints (7b) and (7c).
Equation (7b) specifies which virtual control, v,
to produce. We will assume B to be an n × m
matrix (n < m) with rank n, where n is the num-
ber of virtual controls (typically n = 3) and m is
the number of physical controls available. Equa-
tion (7c) represents the feasible actuator positions
at time t, regarding both the overall position con-
straints and the rate constraints as in (3).

Let us now focus on the cost function in (7a).∥∥ · ∥∥
2

denotes the Euclidean 2-norm, i.e.,
∥∥x∥∥

2
=√

xTx where x is a column vector. us(t) is the
desired stationary distribution of control effort
among the actuators and determines the actuator
positions at trimmed flight. We will discuss the
choice of us in Section 5.3. W1 and W2 are weight-
ing matrices whose (i, i)-entries specify whether it
is important for the i:th actuator, ui, to quickly
reach its desired stationary value, or to change its
position as little as possible. With this interpreta-
tion, a natural choice is to use diagonal weighting
matrices but in the analysis to follow we will allow
arbitrary matrices with the following restriction.

Assumption 1 Assume that the weighting matri-
ces W1 and W2 are symmetric and such that

W =
√
W 2

1 +W 2
2

is nonsingular.

This assumption certifies that there is a unique
optimal solution to the control allocation problem
(7).

The difference between our approach and previ-
ous efforts based on quadratic programming is the
second term in the cost function (7a), which pe-
nalizes the actuator rates. The two terms in the
cost function can be merged into one term (see
Lemma 2) without affecting the solution. Thus,
any QP solver suitable for real-time implementa-
tion3,10,11,14 can be used to find the solution.

How do the design variables, us, W1, and W2,
affect the solution, u(t)?

5 The Nonsaturated Case
To answer this question, let us investigate the

case where the optimal solution to (7a)-(7b) is
feasible with respect to (7c). Then the actuator
constraints can be disregarded and (7) reduces to

min
u(t)

∥∥W1(u(t)− us(t))
∥∥2

2
+∥∥W2(u(t)− u(t− T ))
∥∥2

2

(8a)

Bu(t) = v(t) (8b)

5.1 Explicit solution

Let us begin by stating the closed form solution
to (8).

Proposition 1 Let Assumption 1 hold. Then the
control allocation problem (8) has the solution

u(t) = Eus(t) + Fu(t− T ) +Gv(t) (9)

where

E = (I −GB)W−2W 2
1

F = (I −GB)W−2W 2
2

G = W−1(BW−1)†

The † symbol denotes the pseudoinverse operator
defined as

A† = AT (AAT )−1

for an n×m matrix A with rank n ≤ m.
The proposition shows that the optimal solution

to the control allocation problem (8) is given by
the first order linear filter (9). The properties of
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this filter will be further investigated in Sections
5.2 and 5.3.

In the remainder of this section we will develop
a proof for Proposition 1.

Lemma 1 Let A be an n×m matrix, where n ≤
m, with rank n. Then the minimum norm problem

min
x

∥∥x∥∥
2

Ax = y

has the solution

x = A†y

Proof: See, e.g., ref. 15.

Corollary 1 The weighted, shifted minimum
norm problem

min
x

∥∥W (x− x0)
∥∥

2

Ax = y

where W is nonsingular, has the solution

x = Fx0 +Gy

F = I −GA
G = W−1(AW−1)†

Proof: The change of variables

e = W (x− x0) ⇐⇒ x = x0 +W−1e

gives the equivalent problem

min
e

∥∥e∥∥
2

A(x0 +W−1e) = y ⇐⇒ AW−1e = y −Ax0

Using Lemma 1, the solution is given by

e = (AW−1)†(y −Ax0) ⇐⇒
x = x0 +W−1(AW−1)†(y −Ax0)

= (I −W−1(AW−1)†A)︸ ︷︷ ︸
F

x0 +W−1(AW−1)†︸ ︷︷ ︸
G

y

Lemma 2 The cost function∥∥W1(x− x1)
∥∥2

2
+
∥∥W2(x− x2)

∥∥2

2

has the same minimizing argument as∥∥W (x− x0)
∥∥

2

where

W =
√
W 2

1 +W 2
2

x0 = W−2(W 2
1 x1 +W 2

2 x2)

Proof:∥∥W1(x− x1)
∥∥2

2
+
∥∥W2(x− x2)

∥∥2

2
=

(x− x1)TW 2
1 (x− x1) + (x− x2)TW 2

2 (x− x2) =

xT (W 2
1 +W 2

2 )x− 2xT (W 2
1 x1 +W 2

2 x2) + . . . =

(x− x0)TW 2(x− x0) + . . . =
∥∥W (x− x0)

∥∥2

2
+ . . .

where

W =
√
W 2

1 +W 2
2

x0 = W−2(W 2
1 x1 +W 2

2 x2)

The terms represented by dots do not depend on
x, and hence they do not affect the minimization.

We are now ready to prove Proposition 1.

Proof: From Lemma 2 we know that the opti-
mization criterion (8a) can be rewritten as

min
u(t)

∥∥W (u(t)− u0(t))
∥∥

2

where

W =
√
W 2

1 +W 2
2

u0(t) = W−2(W 2
1 us(t) +W 2

2 u(t− T ))

Applying Corollary 1 to this criterion constrained
by (8b) yields

u(t) = F̄ u0(t) +Gv(t)
F̄ = I −GB
G = W−1(BW−1)†

from which it follows that

u(t) = (I −GB)W−2W 2
1︸ ︷︷ ︸

E

us(t)+

(I −GB)W−2W 2
2︸ ︷︷ ︸

F

u(t− T ) +Gv(t)

which completes the proof.
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5.2 Dynamic properties

Let us now study the dynamic properties of the
filter (9). Note that the optimization criterion in
(8) does not consider future values of u(t). It
is therefore not obvious that the resulting filter
(9) should be even stable. The poles of the filter,
which can be found as the eigenvalues of the feed-
back matrix F , are characterized by the following
proposition.

Proposition 2 Let F be defined as in Proposition
1 and let Assumption 1 hold. Then the eigenvalues
of F satisfy

0 ≤ λ(F ) ≤ 1

If W1 is nonsingular, the upper eigenvalue limit
becomes strict, i.e.,

0 ≤ λ(F ) < 1

Proof: We wish to characterize the eigenvalues
of

F = (I −GB)W−2W 2
2

= (I −W−1(BW−1)†B)W−2W 2
2

= W−1(I − (BW−1)†BW−1)W−1W 2
2

(11)

Let the singular value decomposition of BW−1 be
given by

BW−1 = UΣV T = U
[
Σr 0

] [V Tr
V T0

]
= UΣrV Tr

where U and V are unitary matrices, and Σr is
an n × n diagonal matrix with strictly positive
diagonal entries (since BW−1 has rank n). This
yields

I − (BW−1)†BW−1 = I − VrΣ−1
r UTUΣrV Tr

= I − VrV Tr = V0V
T
0

The last step follows from the fact that V V T =
VrV

T
r + V0V

T
0 = I. Inserting this into (11) gives

us
F = W−1V0V

T
0 W

−1W 2
2

Now use the fact16 that the nonzero eigenval-
ues of a matrix product AB, λnz(AB), satisfy
λnz(AB) = λnz(BA) to get

λnz(F ) = λnz(V T0 W
−1W 2

2W
−1V0)

From the definition of singular values we get

λ(V T0 W
−1W 2

2W
−1V0) = σ2(W2W

−1V0) ≥ 0

This shows that the nonzero eigenvalues of F are
real and positive and thus, λ(F ) ≥ 0 holds.

What remains to show is that the eigenvalues of
F are bounded by 1. To do this we investigate the
maximum eigenvalue, λ(F ).

λ(F ) = σ2(W2W
−1V0)

=
∥∥W2W

−1V0

∥∥2

2

≤
∥∥W2W

−1
∥∥2

2

∥∥V0

∥∥2

2

Since ∥∥V0

∥∥2

2
= λ(V T0 V0︸ ︷︷ ︸

I

) = 1

we get

λ(F ) ≤
∥∥W2W

−1
∥∥2

2

= sup
x6=0

xTW−1W 2
2W

−1x

xTx
=

= sup
y 6=0

yTW 2
2 y

yTW 2y

= sup
y 6=0

yTW 2
2 y

yTW 2
1 y + yTW 2

2 y

≤ sup
y 6=0

yTW 2
2 y

yTW 2
2 y

= 1

(12)

since yTW 2
1 y =

∥∥W1y
∥∥2

2
≥ 0 for any symmet-

ric W1. If W1 is nonsingular, we get yTW 2
1 y =∥∥W1y

∥∥2

2
> 0 for y 6= 0 and the last inequality in

(12) becomes strict, i.e., λ(F ) < 1 in this case.

The proposition states that the poles of the lin-
ear control allocation filter (9) lie between 0 and 1
on the real axis. This has two important practical
implications:

• If W1 is nonsingular the filter poles lie strictly
inside the unit circle. This implies that the
filter is asymptotically stable. W1 being non-
singular means that all actuator positions ex-
cept us render a nonzero cost in (7a). If
W1 is singular, only marginal stability can
be guaranteed (although asymptotic stability
may hold).

• The fact that the poles lie on the positive real
axis implies that the actuator responses to a
step in the virtual control input are not oscil-
latory.

5.3 Steady state properties

In the previous section we showed that the con-
trol allocation filter (9) is asymptotically stable
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under practically reasonable assumptions. Let us
therefore investigate the steady state solution to a
step response.

Proposition 3 Let us be a constant feasible so-
lution such that

Bus = v0

where v(t) ≡ v0 is the desired virtual control input.
Then, if (9) is an asymptotically stable filter, the
steady state control distribution is given by

lim
t→∞

u(t) = us

Proof: If the linear filter (9) is asymptotically
stable we know that the limit value

u∞ = lim
t→∞

u(t)

exists. Setting u(t) = u(t − T ) = u∞ in (9) and
using Bus = v0 yields

u∞ = (I − F )−1(E +GB)us

Using the identity W 2 = W 2
1 +W 2

2 we get

E +GB = (I −GB)W−2W 2
1 +GB

= (I −GB)(I −W−2W 2
2 ) +GB

= I − (I −GB)W−2W 2
2 = I − F

which gives the desired result

u∞ = (I − F )−1(I − F )us = us

Thus, if we feed our dynamic control allocation
scheme with a feasible, desirable control distribu-
tion, us, which solves Bus = v, the filter (9) will
render this distribution at steady state.

If us is not a feasible solution, the resulting
steady state control distribution will depend not
only on us, but also on W1 as well as W2. This
is undesirable since the role of the different design
parameters then becomes unclear.

So how do we find a good feasible steady state
solution? In simple cases, we may be able to do it
by hand but for larger cases the following method
can be applied. Pick us as the solution to the
static control allocation problem

min
us

∥∥Ws(us − up)
∥∥

2

Bus = v
(13)

Here, up represents some fixed preferred, but typ-
ically infeasible control distribution, which, e.g.,

u1, δrc

u2, δlc

u3, δroe
u4, δrie

u5, δlie
u6, δloe

u7, δr

Fig. 3 Admire control surface configuration.

would give minimum drag. In the simplest case,
with Ws = I and up = 0, we get the pseudoinverse
solution us = B†v.

In certain cases, some steady state actuator po-
sitions should be scheduled with, e.g., speed and
altitude, rather than depend on v. This can be
handled by introducing additional equality con-
straints

us,i = up,i (14)

for those actuators i whose steady state positions
have been predetermined. The optimal solution to
(13)-(14) can be found using Corollary 1.

6 Design Example
Let us now illustrate how to use the proposed

design method for dynamic control allocation.
The Admire model,17 a Simulink based realistic
fighter aircraft model including, e.g., actuator dy-
namics and nonlinear aerodynamics, is used for
simulation. The existing flight control system is
used to compute the aerodynamic moment coef-
ficients, k(r, x) = M(x, uAdm), to be produced in
roll, pitch, and yaw, see Figure 2. The model pa-
rameters B and c in (4), used in (5) and (6), are
computed at each sampling instant by linearizing
M(x, u) around the current measurement vector,
x(t), and the previous control vector, u(t− T ). In
the Admire model, T = 0.02 s. The constrained
QP problem (7) is solved at each sampling instant
using the sequential least squares solver from ref.
14.

The control vector,

u =
(
u1 . . . u7

)T
consists of the commanded deflections for the ca-
nard wings (left and right), the elevons (inboard
and outboard, left and right), and for the rudder,
in radians, see Figure 3 where δ∗ denote the ac-
tual actuator positions. The actuator constraints
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Control reallocation
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k(r, x)

c(x)

Σ
+
−

Control

allocation

Eq. (7)

uv

x

Fig. 2 Overview of the closed loop system used for simulation. The controls produced by the Admire flight
control system are reallocated using dynamic control allocation.

are given by

δmin = (−55 −55 −30 −30 −30 −30 −30)T

δmax = (25 25 30 30 30 30 30)T

δrate = (50 50 150 150 150 150 100)T

measured in degrees, and degrees per second, re-
spectively.

At trimmed flight at Mach 0.5, 1000 m, the con-
trol effectiveness matrix is given by

B = 10−2×(
0.5 −0.5 −4.9 −4.3 4.3 4.9 2.4
8.8 8.8 −8.4 −13.8 −13.8 −8.4 0
−1.7 1.7 −0.5 −2.2 2.2 0.5 −8.8

)

from which it can be seen, e.g., that the inboard
elevons are the most effective actuators for pro-
ducing pitching moment while the rudder provides
good yaw control, as expected.

Let us now consider the requirements regard-
ing the control distribution. At trimmed flight,
it is beneficial not to deflect the canards at all to
achieve minimum drag. We therefore select the
steady state distribution us as the solution to

min
us

∥∥us∥∥2

Bus = v

us,1 = us,2 = 0

which yields
us = Sv

where

S =


0 0 0
0 0 0
−5.4 −1.6 −0.4
−4.6 −2.6 −2.4
4.6 −2.6 2.4
5.4 −1.6 0.4
3.0 0 −10.1


During the initial phase of a pitch maneuver, on

the other hand, utilizing the canards counteracts
the unwanted nonminimum phase tendencies that

the pilot load factor, nz, typically displays. Thus,
the canards should be used to realize parts of the
high frequency content of the pitching moment.
Selecting

W1 = diag
(
2 2 2 2 2 2 2

)
W2 = diag

(
5 5 10 10 10 10 10

)
with the lowest rate penalty on the canards, and
using Proposition 1, yields the control allocation
filter

u(t) = Fu(t− T ) +Gtotv(t)

where

F = 10−1×
5.5 −1.4 2.9 3.4 4.3 1.8 −5.0
−1.4 5.5 1.8 4.3 3.4 2.9 5.0
0.7 0.4 6.4 −3.4 1.3 1.9 0.7
0.9 1.1 −3.4 5.5 0.7 1.3 −0.8
1.1 0.9 1.3 0.7 5.5 −3.4 0.8
0.4 0.7 1.9 1.3 −3.4 6.4 −0.7
−1.3 1.3 0.7 −0.8 0.8 −0.7 2.2



Gtot = G+ ES =


1.7 2.8 −5.3
−1.7 2.8 5.4
−5.3 −0.8 −0.6
−4.7 −1.3 −2.2
4.7 −1.3 2.2
5.3 −0.8 0.6
2.4 0 −8.2


in the nonsaturated case. Figure 5 shows a mag-
nitude plot of the transfer functions from v to
u. Each transfer function has been weighted with
its corresponding entry in B to show the propor-
tion of v that the actuator produces. In roll, the
elevons produce most of the control needed while
in pitch, the canards contribute substantially at
high frequencies. Yaw control is produced almost
exclusively by the rudder.

Figure 6 shows the simulation results from a
pitch up command followed by a roll command.
It is worth pointing out that the discrepancies be-
tween p and pcom, and between q and qcom, are not
due to the choice of control allocation algorithm,
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−

)
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c
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min ||δ||         
δ

c
=0             

Fig. 4 Comparison of the nonminimum phase be-
havior in nz for different control allocation strategies
when a pitch command is applied. Using the canards
to produce high frequency pitching moment yields a
small undershoot in nz while minimizing the drag at
trimmed flight.

but arise from the design of the Admire control
system.

In accordance with the designed frequency dis-
tributions, the canard wings react quickly to the
pitch command while at steady state only the
elevons and the rudder are deflected.

The gain from using the canards in this fashion
can be seen in Figure 4 which shows a blowup of
the load factor behavior at t = 1 s when different
control allocation strategies are used. The dotted
curve, with the largest undershoot, arises when the
canards are not used at all. The dashdotted curve
represents static control allocation with a minimal
control objective (us = 0, W1 = I, and W2 = 0 in
(7)). The undershoot is decreased but the drag at
trimmed flight is increased by 2% since the canard
deflections are nonzero at steady state. The solid
curve coincides with that in Figure 6 and results
from using dynamic control allocation. This yields
the smallest undershoot with no increase of drag
at trimmed flight since at steady state the canard
delections are zero.

7 Conclusions
The proposed method for dynamic control allo-

cation offers the user significant freedom in design-
ing the control distribution among the actuators
not only in size but also in frequency. A main
advantage compared to static allocation methods
is that the high frequency control distribution,
affecting the initial aircraft response to a pilot
command, and the steady state control distribu-
tion, determining, e.g., drag and radar signature
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Fig. 5 Distribution of control effort among the ac-
tuators at different frequencies. The curves represent
the magnitudes of the transfer functions from v to u.
Each transfer function has been weighted with its cor-
responding entry in B to show the proportion of v that
the actuator produces.

at trimmed flight can be selected different. Per-
forming the filtering in a constrained optimization
framework provides automatic redistribution of
control effort when one actuator saturates in po-
sition or in rate.
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dynamics, are shown.
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