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Abstract

Although many of today’s nonlinear control design algorithms
assume the system dynamics to be affine in the control input,
this often does not hold in practice. A remedy for this is to
instead design a control law in terms of some other entity that
satisfies the structural assumptions of the design method. In
this contribution we discuss how to realize such a virtual con-
trol law in terms of the actual control variable. Given a nomi-
nal static invertible model of the mapping between the two, the
true mapping is assumed to differ from the model by a con-
stant bias. Two ways of how to estimate this bias on-line and
use it for feedback are proposed. One of them corresponds to
adaptive backstepping, the other one is an observer based ap-
proach. In both cases we investigate how to guarantee closed
loop stability when the estimate is used for feedback.

1 Introduction

Many of today’s constructive nonlinear control design methods
assume the system dynamics to be affine in the control input,
i.e., for the model to be of the form

ẋ = f(x) + g(x)u

In many practical cases this is not true. A common solution,
see, e.g., [1, 2, 6], is to find some other entity, a virtual control
inputv, in which the dynamics are affine, and that depends on
the true control inputu through a static mapping. Using, e.g.,
backstepping or feedback linearization, a globally stabilizing
control lawv = k(x) can then be derived. These virtual control
inputs are often physical entities like forces, torques, or flows,
while the true input might be the deflection of a control surface
in a flight control case or the throttle setting in an engine control
case.

The remaining problem, how to find which actual control input
u to apply, is often very briefly discussed, typically assuming
that the mapping fromu to v is completely known and invert-
ible. In this paper we investigate the case where the mapping is
only partially known. It might be that the true mapping is too
complex to identify, or that other sources thanu contribute tov.

Friction might for example reduce the net torque in a robot con-
trol case. Here, we will pragmatically model the discrepancy
between the model and the true mapping as a constant bias. We
propose two different ways of adapting to the bias, and for each
case, the issue of closed loop stability is investigated.

2 Problem Formulation

Consider a nonlinear system of the form

ẋ = f(x) +Bv

v = g(x, u)
(1)

wherex ∈ Rn is the measurable state vector,u ∈ Rm is the
true control input, andv ∈ Rl, l ≤ n is the virtual control input
in which the system dynamics are affine.B is ann× l constant
matrix with rankl1.

From a preceding control design, a control law

v = k(x) (2)

is assumed to be known such thatx = 0 is a globally asymp-
totically stable (GAS) equilibrium [3] of

ẋ = f(x) +Bk(x)

We also assume that a Lyapunov functionV (x) for the closed
loop system is known, such that

V̇ (x) = Vx(x)(f(x) +Bk(x)) = −W (x) (3)

whereW (x) is positive definite.

Now, assume that the mappingg : Rn×Rm → Rl from the true
control input,u, to the virtual control input,v, is not completely
known but only a model,̂g, such that

g(x, u) = ĝ(x, u) + g̃(x, u)

We will assume that the nominal model is invertible in the sense
that for eachx ∈ Rn, w ∈ Rl there exists au ∈ Rm which
solves

ĝ(x, u) = w

1This assumption ensures that the number of virtual control inputs is not
redundant.



This means that we disregard, e.g., actuator saturation.

If we let u0 denote the (unknown) control input that solves
f(0) +Bg(0, u0) = 0, the model error can be split into

g̃(x, u) = θ + δ(x, u)

where

θ = g̃(0, u0)
δ(x, u) = g̃(x, u)− g̃(0, u0)

Here,θ ∈ Rl is a constant bias whileδ(x, u) by construction
vanishes at the desired equilibrium. Disregarding the model
error and implementing

ĝ(x, u) = k(x)

would give us the closed loop system

ẋ = f(x) +Bk(x) +B(θ + δ(x, u))

Sinceθ in general will be non-zero, the desired equilibrium
property of the origin would then be lost.

Previous work on how to deal with this type of model error,
which enters at the same point as the control input, includes
Lyapunov redesign and nonlinear damping, see [3]. Here, the
basic idea is to augment the nominal control law with an addi-
tional state feedback term to dominate the effects of the model
error. A weakness of these methods is that they either lead to
chattering in the control input or that only boundedness of the
solutions can be guaranteed, and not asymptotic stability.

Here, we will focus on achieving asymptotic stability using a
continuous dynamic control law, adapting to and cancelling the
effects of the nonvanishing perturbation,θ. Also, due to the
difficulties in analyzing the effects ofδ(x, u), we will prag-
matically assume the control design to be robust against this
perturbation and disregard it in our analysis to come.

With this we can rewrite (1) as

ẋ = f(x) +B(w + θ) (4a)

w = ĝ(x, u) (4b)

w is the part of the virtual control input,v, that we are truly in
control of.

Givenθ, (2) could be realized by solving

w = v − θ ⇐⇒ ĝ(x, u) = k(x)− θ (5)

for u. How do we deal with the fact thatθ is not available? A
straightforward solution is to rely on one of the corner stones
of adaptive control and use the certainty equivalence [5] of (5).
This means that we replace the unknown parameter vectorθ by
an estimatêθ and form

w = ĝ(x, u) = k(x)− θ̂ (6)

Figure 1 illustrates the approach. The strategy is intuitively
appealing but leads to two important questions:
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Figure 1: Illustration of the certainty equivalence controller (6).
The shadowed box represents the dynamic system to be con-
trolled. The dashed box makes up the system that the control
designer actually faces, sinceθ is not known.

• How do we estimateθ?

• Can we retain global stability usinĝθ for feedback?

Two approaches to the problem will be pursued. In Section 3,
we will use standard adaptive backstepping techniques to find
an estimator that will guarantee closed loop stability without
having to adjust the control law (6). In Section 4, the starting
point is that a converging estimator is given. The question then
is how to adjust the control law to retain stability.

3 Adaptive Backstepping

Adaptive backstepping [5] deals with the unknown parameter
vectorθ by extending the Lyapunov functionV (x) with a term
penalizing the estimation error̃θ = θ − θ̂:

Va(x, θ̃) = V (x) +
1
2
θ̃TΓ−1θ̃

where

Γ =


γ1 0 · · · 0
0 γ2 · · · 0
...

...
...

...
0 0 · · · γl

 (7)

is a matrix containing adaptation gainsγi > 0 for 1 ≤ i ≤ l.
By cleverly selecting the update rule

˙̂
θ = τ(x, θ̂)

closed loop stability can be guaranteed. To see this we inves-
tigateV̇a when (6) is used as feedback. Using (3) and (6) we
get

V̇a = Vx(x)(f(x) +B(k(x)− θ̂ + θ)) − τ(x, θ̂)TΓ−1θ̃

= −W (x) + (Vx(x)B − τ(x, θ̂)TΓ−1)θ̃
(8)

The first term is negative definite according to the assumptions,
while the second, mixed term is indefinite. Sinceθ̃ is not avail-
able, the best we can do is to cancel the second term by select-
ing

τ(x, θ̂) = τ(x) = Γ(Vx(x)B)T (9)



The resulting closed loop system becomes

ẋ = f(x) +B(k(x) + θ̃) (10)

˙̃θ = −Γ(Vx(x)B)T

which satisfies

V̇a(x, θ̃) = −W (x)

DespiteV̇a only being negative semidefinite, the origin,x =
0, θ̃ = 0, is GAS. This follows from the fact that onlyx = 0
solvesV̇a = 0 and that forx to remain zero,Bθ̃ = 0 must
also hold. SinceB has rankl according to the assumptions,
this impliesθ̃ = 0. Thus,x = 0, θ̃ = 0 is a GAS equilibrium
according to LaSalle’s invariance principle [3].

The following proposition summarizes the preceding discus-
sion.

Proposition 1 (Adaptation using backstepping)
Consider the system

ẋ = f(x) +B(w + θ)

wherex ∈ Rn is the measurable state vector,w ∈ Rl, l ≤ n is
the control input,θ ∈ Rl is an unknown constant vector, andB
in ann× l matrix with rankl.

Letw = k(x) − θ be a control law such thatx = 0 becomes a
GAS equilibrium and letV (x) be a Lyapunov function for the
closed loop system such that

V̇ (x) = Vx(x)(f(x) +Bk(x)) < 0, x 6= 0

Then, the control law

w = k(x) − θ̂ (11a)

˙̂
θ = Γ(Vx(x)B)T (11b)

with Γ as is(7), rendersx = 0, θ̂ = θ a GAS equilibrium. �

4 Observer Based Adaptation

In the previous section, the estimator was a consequence of
assigning a negative Lyapunov function time derivative. In this
section, we first design an estimator and then investigate how
to possibly adjust the certainty equivalence control law (6).

4.1 The general case

The idea is to regardθ as an unknown but constant state vec-
tor. Augmenting the original dynamics (4a) with this extra state
vector yields

ẋ = f(x) +B(w + θ)

θ̇ = 0
(12)

Although this system is nonlinear, we can design an observer
for θ with linear error dynamics, since the nonlinearity,f(x),
is a function of the measurable states only, see [4]. A nonlinear
observer is given by

d

dt

(
x̂

θ̂

)
=
(
f(x) +B(w + θ̂)

0

)
+
(
K1

K2

)
(x− x̂) (13)

The dynamics of the estimation errorε =
(
x− x̂ θ − θ̂

)T
become linear:

ε̇ =
(
−K1 B
−K2 0

)
ε = Aεε (14)

To show that the eigenvalues ofAε can be placed arbitrarily, we

examine the linear parts of (12).ξ =
(
x θ

)T
has the linear

internal dynamics

ξ̇ =
(

0 B
0 0

)
ξ = Aξξ

and the output equation is given by

y = x =
(
In 0

)
ξ = Cξξ

This yields the observability matrix

O =

 Cξ
CξAξ

...

 =

In 0
0 B
...

...


with rankn + l according to the rank assumption onB. Thus
the error dynamics of the observer can be chosen arbitrarily.

Let us now determine a Lyapunov function for the observer.
For any asymptotically stabilizing observer gainsK1 andK2,
makingAε Hurwitz2, we can find a positive definite matrixP
such that

d

dt
εTPε = −εT

(
In 0
0 Γ−1

)
︸ ︷︷ ︸

Q

ε ≤ −θ̃TΓ−1θ̃ (15)

with Γ as in (7), by solving the Lyapunov equation

ATε P + PAε = −Q

according to basic linear systems theory [7].

To investigate the closed loop stability, we combine the original
Lyapunov functionV (x) with εTPε and form

Vo(x, ε) = V (x) + εTPε

We also augment the control law (6) with an extra term,l, to be
decided, to compensate for usingθ̂ for feedback. The resulting
control law

w = k(x) + l(x, θ̂)− θ̂ (16)

2A matrix is Hurwitz if all its eigenvalues are in the open left half plane.



yields

V̇o = Vx(x)(f(x) +B(k(x) + l(x, θ̂)− θ̂ + θ)) − εTQε
≤ −W (x) + Vx(x)B(l(x, θ̂) + θ̃)− θ̃TΓ−1θ̃

By choosing

l(x, θ̂) = l(x) = −Γ(Vx(x)B)T (17)

we can perform a completion of squares.

V̇o ≤ −W (x)− VxBΓ(VxB)T + VxBθ̃ − θ̃TΓ−1θ̃

= −W (x)− 3
4
θ̃TΓ−1θ̃

−
[
(VxB)T − 1

2
Γ−1θ̃

]TΓ
[
(VxB)T − 1

2
Γ−1θ̃

]
< 0, x 6= 0, θ̃ 6= 0

(18)

Thus, the control law (16) in combination with the observer
(13) makesx = 0, θ̂ = θ a GAS equilibrium.

Before we conclude, let us study a special case where (6) does
not need to be augmented withl(x) in order for closed loop
stability to be guaranteed.

4.2 The optimal control case

Let us consider the case where the original, unattainable control
law (2) solves an optimal control problem of the form

min
v

∫ ∞
0

(q(x) + vTR(x)v)dt (19)

Here,q(x) is a positive definite function andR(x) is a sym-
metric positive definite matrix satisfying

vTR(x)v ≤ vTR0v for all x ∈ Rn (20)

whereR0 is a constant symmetric positive definite matrix.
Then the control law can be expressed as

k(x) = −1
2
R−1(x)(VxB)T

for some Lyapunov functionV (x) solving the corresponding
Hamilton-Jacobi-Bellman equation, see [8]. Furthermore,V
satisfies

V̇ = −W (x) = −q(x)− 1
4
VxBR

−1(x)(VxB)T

when the optimal control law is used.

SelectingΓ = R−1
0 in (15) and using the certainty equivalence

control law (6) yields (c.f. Equation (18))

V̇o ≤ −q(x)− 1
4
VxBR

−1(x)(VxB)T + VxBθ̃ − θ̃TR0θ̃

= −q(x)− θ̃T (R0 −R(x))θ̃

−
[1
2

(VxB)T −R(x)θ̃
]T
R−1(x)

[1
2

(VxB)T −R(x)θ̃
]

< 0, x 6= 0, θ̃ 6= 0

Hence, in this case we do not need to augment the certainty
equivalence control law (6) with an extra state feedback term
in order to guarantee global stability. An intuitive interpretation
of this result is that some of the optimal control effort can be
sacrificed in order to compensate for using the estimateθ̂ for
feedback.

4.3 Main result

Let us summarize our discussion.

Proposition 2 (Observer based adaptation)
Consider the system

ẋ = f(x) +B(w + θ)

wherex ∈ Rn is the measurable state vector,w ∈ Rl, l ≤ n is
the control input,θ ∈ Rl is an unknown constant vector, andB
in ann× l matrix with rankl.

Letw = k(x) − θ be a control law such thatx = 0 becomes a
GAS equilibrium and letV (x) be a Lyapunov function for the
closed loop system such that

V̇ (x) = Vx(x)(f(x) +Bk(x)) < 0, x 6= 0

Then, the controller

w = k(x) − Γ(Vx(x)B)T − θ̂ (21a)

d

dt

(
x̂

θ̂

)
=
(
f(x) +B(w + θ̂)

0

)
+
(
K1

K2

)
(x− x̂) (21b)

with Γ as is (7), and where

(
−K1 B
−K2 0

)
is Hurwitz, renders

x = 0, θ̂ = θ a GAS equilibrium.

Furthermore, ifv = w + θ = k(x) solves an optimal control
problem of the form

min
v

∫ ∞
0

(q(x) + vTR(x)v)dt

whereR(x) satisfies(20), then the above result also holds when
(21a)is replaced by the certainty equivalence control law

w = k(x) − θ̂ (22)

�

5 A Water Tank Example

Let us apply the two strategies to a practical example to inves-
tigate their pros and cons. Consider the two tanks in Figure 2.
The control objective is to achieve a certain water levelr in the
lower tank. Using Bernoulli’s equation and setting all constants
to unity, the system dynamics become

ẋ1 = −√x1 + v
ẋ2 = −√x2 +

√
x1
⇐⇒ ẋ =

(
−√x1

−√x2 +
√
x1

)
︸ ︷︷ ︸

f(x)

+
(

1
0

)
︸︷︷︸
B

v



u

v−θ

x2

x1

√
x2

√
x1

Figure 2: Two tanks connected in series.

wherex1 = water level of the upper tank,x2 = water level of
the lower tank, andv = incoming water flow.v is produced by
changing the aperture,u of the valve of the input pipe.

Assuming some external water supply to keep a constant pres-
sure,v will be proportional to the aperture opening area, which
in turn depends onu2. Again setting all constants to unity
yields v = u2. In order to be able to account for a possible
model error in this static relationship, e.g., due to a leakage
−θ > 0, we assign the model

v = u2 + θ = w + θ

in accordance with (4a).

The first step is to find a globally stabilizing control lawv =
k(x). We do this using an ad hoc Lyapunov approach. At the
desired steady state,x1 = x2 = r. Therefore consider the
control Lyapunov function

V (x) =
1
2

(x1 − r)2 +
a

2
(x2 − r)2, a > 0

and compute its time derivative:

V̇ (x) = (x1 − r)(−
√
x1 + k(x)) + a(x2 − r)(−

√
x2 +

√
x1)

By collecting the beneficial terms and cancelling the indefinite
ones, one finds that

k(x) =
√
r + b(r − x1) +

a
√
x1 +

√
r

(r − x2)

a > 0, b ≥ 0
(23)

yieldsV̇ (x) = −W (x) where

W (x) = (x1 − r)(
√
x1 −

√
r) + b(x1 − r)2

+ a(x2 − r)(
√
x2 −

√
r)

is positive definite.

Let us now evaluate the expressions involved with the two ap-
proaches for adapting to the leakage. The adaptive backstep-
ping update rule (11b) for estimatingθ becomes

˙̂
θ = γa

∂V (x)
∂x1

= γa(x1 − r), γa > 0 (24)

With this, the implicit control law (11a) becomes

w = u2 = k(x) + γa

∫ t

0

(r − x1(s))ds (25)

Hence, using adaptive backstepping in this case corresponds to
adding integral action from control error in the upper tank.

Using the observer based approach, the estimator can be de-
signed according to (21b), but since onlyx1 is directly affected
by θ we can use the reduced observer

d

dt

(
x̂1

θ̂

)
=
(
−√x1 + w + θ̂

0

)
+
(
k1

k2

)
(x1 − x̂1)

=
(
−k1 1
−k2 0

)(
x̂1

θ̂

)
+
(
k1

k2

)
x1 +

(
1
0

)
(−√x1 + w)

(26)

where the latter formulation is more suited for implementation.
It is also interesting to compute the input-output description of
the observer, which is given by

θ̂ =
k2

s2 + k1s+ k2
(sx1 − (−√x1 + w))

≈ ẋ1 − (−√x1 + w) = θ

for low values ofs = iω. This means that the observer can
be interpreted as computing the difference betweenẋ1 and the
expected dynamics,−√x1 + w.

The implicit control law (21a) becomes

w = u2 = k(x) + γo(r − x1)− θ̂, γ > 0

If b > 0 is selected in the control law (23), we do not have
to add the termγo(r − x1) for the sake of stability, since it
can be seen as a part ofk(x) already. As in the optimal control
case treated in Section 4.2, closed loop is then guaranteed using
the original certainty equivalence control law (22) without any
modification.

In the simulations, the parameter values were selected accord-
ing to Table 1. The initial water level, which is also fed to the
observer, is 1 in both tanks. The control objective is forx2 to
reach the reference levelr = 4 and maintain this despite the
leakageθ = −3 starting att = 25 s. Figure 3 shows the ac-
tual control input and the water level of the lower tank when
no adaptation is used. Figures 4 and 5 show the results of ap-
plying adaptive backstepping and observer based adaptation,
respectively. The leakage estimates in the two cases are shown
in Figure 6.

The main difference between the two adaptation schemes is
that the backstepping update rule (24) depends explicitly on
the control error while the observer estimate from (26) evolves
independently of the control error. This can be seen clearly in
the initial behavior of the two estimates in Figure 6.
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Figure 3: No adaptation, pure state feedback.
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Figure 4: Adaptive backstepping.
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Figure 5: Observer based adaptation.
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Figure 6: Bias estimates using adaptive backstepping (left) and
observer based adaptation (right).

Adaptive Observer
k(x) backstepping based adaptation
a = 1 γa = 0.3 k1 = 1
b = 0.5 k2 = 0.5

γo = 0

Table 1: Controller parameter values used in the simulations.

6 Conclusions

In this paper we have proposed an adaptive approach to the
problem of controlling systems with input nonlinearities and
uncertainties. The mapping from the true control input to some
virtual control input, in which the system dynamics are affine,
was modeled as a known static invertible mapping plus an un-
known bias. The intuitively attractive idea of estimating the
bias and compensating for it in the feedback law proved to
work also in theory. Two paths were investigated. First, adap-
tive backstepping was applied, and was found to correspond to
adding integral action in the considered example. Second, an
observer based approach was taken, resulting in a slight change
of the original feedback law to account for using the estimated
bias for feedback. However, if the original feedback law is op-
timal, closed loop stability is guaranteed without changing the
feedback, due to its inherent gain margin.
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