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Abstract

In aircraft control, control allocation can be used to
distribute the total control effort among the actuators
when the number of actuators exceeds the number of
controlled variables. The control allocation problem
is often posed as a constrained least squares problem
to incorporate the actuator position and rate limits.
Most proposed methods for real-time implementation,
like the redistributed pseudoinverse method, only de-
liver approximate, and sometimes unreliable solutions.
In this paper we investigate the use of classical active
set methods for control allocation. We develop active
set algorithms that always find the optimal control dis-
tribution, and show by simulation that the timing re-
quirements are in the same range as for two previously
proposed solvers.

1 Introduction

Aircraft control is one important application where the
number of actuators often exceeds the number of vari-
ables to be controlled. Such actuator redundancy is
motivated by enhanced maneuverability and tolerance
towards actuator failures. How to distribute the con-
trol effort among the actuators is known as the control
allocation problem.

Several different formulations, like direct control allo-
cation [7], daisy chaining [5], and constrained linear
programming [4, 12] have been proposed, see [2] for a
survey. However, the most frequently encountered ap-
proaches are based on constrained quadratic program-
ming [16, 10, 6, 3], and this is the formulation that we
will use. Despite its widespread use, most numerical
solutions proposed for this formulation of the control
allocation problem only deliver approximate solutions
of varying accuracy. The underlying, often unspoken,
claim is that the general constrained quadratic pro-
gramming machinery is too complex to be used in real-
time aircraft applications.

In this paper we investigate this claim and propose
two algorithms, based on classical active set meth-
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ods [1, 14], for finding the optimal solution of the con-
trol allocation problem posed as a constrained sequen-
tial least squares problem. Open loop simulations show
that the proposed algorithms have timing properties
similar to the redistributed pseudoinverse method in
[16] and the fixed-point algorithm in [6], and produce
solutions with better accuracy.

2 Control Allocation in a Least Squares
Framework

The essential task of a control allocator is to com-
pute actuator commands u ∈ R

m which provide an
overall control effort, a virtual control, v ∈ R

n where
m > n. In the aircraft control case, u represents the
commanded positions of the control surfaces and other
available controls, while v represents the moments or
angular accelerations to be produced in pitch, roll, and
yaw (n = 3) to achieve the desired aircraft dynamics.

Ignoring the actuator dynamics, which is much faster
than the remaining aircraft dynamics, the generated
virtual control is assumed to be given by Bu, where B
is the control effectiveness matrix. The control vector
u is restricted by

u ≤ u ≤ u (1)

where u and u are lower and upper bounds determined
at each sampling instant by the position and rate limits
of the actuators.

From a pragmatic point of view the control allocation
problem can be stated as follows. Given a virtual con-
trol command v, determine u, satisfying (1), such that
Bu = v. If there are several solutions, pick the best
one. If there is no solution, determine u such that Bu
approximates v as well as possible.

2.1 Problem Formulations
As stated in the introduction, we will use the 2-norm,
∥
∥u

∥
∥

2
= uT u, as a measure of how “good” a solution

or an approximation is. This leads to the following
sequential least squares formulation of the control allo-
cation problem:

uS = arg min
u∈K

∥
∥Wu(u − up)

∥
∥

K = arg min
u≤u≤u

∥
∥Wv(Bu − v)

∥
∥

(2)



Here, up is the preferred control vector and Wu and
Wv are nonsingular weighting matrices. Equation (2)
should be interpreted as follows: Given K, the set of
feasible controls that minimize Bu − v (weighted by
Wv), pick the control that minimizes u− up (weighted
by Wu).

An approximate way to reformulate a sequential least
squares problem like (2) is to merge the two optimiza-
tion criteria into one by summation and form a weighted

least squares problem:

uW = arg min
u≤u≤u

∥
∥Wu(u−up)

∥
∥

2
+γ

∥
∥Wv(Bu−v)

∥
∥

2
(3)

To emphasize that primarily, Bu − v should be mini-
mized, a large value of the weighting factor γ is used.
In [1] it is shown that limγ→∞ uW (γ) = uS .

2.2 Numerical Methods
Let us now survey some of the numerical methods pro-
posed in the literature for solving (2) and (3).

Sequential Least Squares Most existing methods
for solving the sequential least squares problem (2) are
based on the well known fact that if we disregard the
actuator constraints (1), then (2) has a closed form
pseudoinverse solution, see, e.g., [1]. In [16, 9] a redis-
tribution scheme is used, in which all actuators that
violate their bounds in the pseudoinverse solution are
saturated and removed from the optimization. Then,
the problem is resolved with the remaining actuators
as free variables. The procedure is repeated until a fea-
sible iterate has been reached or all variables have sat-
urated. This redistributed pseudoinverse (RPI) scheme
does not guarantee that the optimal solution is found
or even that Bu = v is met when possible, as illustrated
in [2]. A similar method, where only one actuator is
saturated in each iteration, is proposed in [10].

Another approximate approach, where the 2m box con-
straints (1) are replaced by one ellipsoidal constraint,
is presented in [10]. The new problem is shown to be
solved efficiently using a bisection method.

Efforts to compute the exact optimal solution can also
be found. In [15], an iterative method, which converges
to the optimal solution when the feasible region is given
by a general convex set, is presented. In [3], exhaustive
search is proposed as a way to determine which actu-
ators should saturate. As noted, the computational
requirements of this method grows rapidly with the
number of actuators.

In [13], a special case of the sequential least squares
problem is considered, namely the minimal least

squares problem

uM = arg min
u∈K

∥
∥u

∥
∥

K = arg min
u≤u≤u

∥
∥Wv(Bu − v)

∥
∥

(4)

where the minimal length solution is picked if
∥
∥Wv(Bu − v)

∥
∥ does not have a unique feasible min-

imizer. The author suggests the use of active set
methods for solving the problem. The sequential least
squares problem (2) can not always be cast into a mini-
mal least squares problem like (4) since in the new vari-
ables ũ = Wu(u−up) the constraints (1) will in general
no longer be simple box constraints. However, if Wu

is a diagonal matrix, corresponding to pure scaling of
the variables, the box constraint property is preserved.
In these cases, it is favorable to use the minimum least
squares approach since it is computationally somewhat
cheaper.

Weighted Least Squares For the weighted least
squares formulation (3), an iterative fixed-point algo-
rithm is proposed in [6]. The algorithm asymptotically
converges to the optimal solution.

3 Active Set Algorithms for Control Allocation

Except for the exhaustive search algorithm, and the
active set minimal least squares algorithm, all algo-
rithms in the previous section in general only produce
approximate solutions, some of which converge to the
optimum as the number iterations goes to infinity. In
this section we will further investigate the use of active
set methods for control allocation. Active set meth-
ods are used in many of today’s solvers for constrained
quadratic programming, and can be shown to find the
optimal solution in a finite number of iterations [14].

A general active set algorithm is outlined in the next
section, in which we also motivate why active set meth-
ods seem well suited for control allocation. Two active
set algorithms, tailored for solving the sequential least
squares problem (2) and the weighted least squares
problem (3), are presented in Section 3.2 and Section
3.3, respectively.

3.1 The Active Set Algorithm
Consider the bounded and equality constrained least
squares problem

min
u

∥
∥Au − b

∥
∥ (5a)

Bu = v (5b)

Cu ≥ U (5c)

where (5c) is equivalent to (1) if we define C =
(

I
−I

)

and U =
( u
−u

)
. Active set algorithms (see [1, 14] for



an in-depth treatment) solve this problem by solving
a sequence of equality constrained problems. In each
step some of the inequality constraints are regarded as
equality constraints, and form the working set W, while
the remaining inequality constraints are disregarded.
The working set at the optimum in known as the active
set of the solution.

Note that this is much like the RPI method from Sec-
tion 2.2. The difference is that an active set algorithm
is more careful regarding which variables to saturate,
and that an active set algorithm has the ability to free
a variable that was saturated in a previous iteration.

An active set algorithm for solving (5), adopted from
[1], is given below in pseudocode.

Algorithm 1 (Active set algorithm)
Let u0 be a feasible starting point. A point is feasible
if it satisfies (5b) and (5c). Let the working set W

contain (a subset of) the active inequality constraints
at u0.

for k = 0, 1, 2, . . . , N − 1
Given uk, find the optimal perturbation p, consid-
ering the constraints in the working set as equality
constraints and disregarding the remaining inequal-
ity constraints. Solve

min
p

∥
∥A(uk + p) − b

∥
∥

Bp = 0

pi = 0, i ∈ W

(6)

if uk + p is feasible
Set uk+1 = uk + p and compute the Lagrange
multipliers,

( µ
λ

)
, where µ is associated with (5b)

and λ with the active constraints in (5c).
if all λ ≥ 0

uk+1 is the optimal solution to (5).
else

Remove the constraint associated with the
most negative λ from the working set.

else
Determine the maximum step length α such
that uk+1 = uk + αp is feasible. Add the pri-
mary bounding constraint to the working set.

end

The Lagrange multipliers are determined by

AT (Au − b) =
(
BT CT

0

)
(

µ
λ

)

(7)

where C0 contains the rows of C that correspond to
constraints in the working set.

So why should an active set algorithm be suited for
control allocation?

Active set algorithms are the most efficient when a good

estimate of the optimal active set is available. Then the
number of changes in the working set, i.e., the number
if iterations, will be small. In control allocation, a very
good estimate is given by the active set of the solution
in the previous sampling instant, since in practice, the
optimization problem will not change much between
two sampling instants. This means that the optimal
solution, and particularly the set of active constraints,
will not change much either.

Another appealing property is that in each iteration,
a feasible iterate uk+1 is produced that yields a lower
value of the cost function than the previous iterate, uk.
Thus, the maximum number of iterations, N , can be
set to reflect the maximum computation time available.

3.2 Sequential Least Squares
We now present an algorithm for solving the sequential
least squares problem (2) in two phases. In phase one,
a feasible solution to Bu = v is determined, if possible,
which is then used as the starting point in phase two.
It is assumed that no three actuators produce coplanar
controls. This means that any three columns of B are
linearly independent.

Algorithm 2 (Sequential LS)
Phase 1:

1. Let u0 and W be the resulting solution and work-
ing set from the previous sampling instant.1

2. Solve

u1 = arg min
u

∥
∥Wv(Bu − v)

∥
∥

u ≤ u ≤ u

using Algorithm 1 with the following modifica-
tion. When the number of free variables exceeds
n, the optimal perturbation p is not uniquely de-
termined. In this case, pick the minimum pertur-
bation.

3. If Bu1 = v, move to phase 2. Otherwise, set
uS = u1.

Phase 2:

1. Let u0 and W be the resulting solution and work-
ing set from phase 1.

2. Solve
uS = arg min

u

∥
∥Wu(u − up)

∥
∥

Bu = v

u ≤ u ≤ u

using Algorithm 1.

1We make the reasonable assumption that u
0 is feasible w.r.t.

the new position limits u and u.



When we have rate constraints affecting u and u, u0

and W may not be “compatible” since the fixed com-
ponents in u0 are set to the limits specified by u and
u from the previous sampling instant. In this case we
update the values of the fixed variables in u0 to reflect
the new limits. When the control allocator is initiated,
and there is no previous solution available, we can se-
lect u0 = (u + u)/2 and W = ∅.

3.3 Weighted Least Squares
The weighted least squares problem (3) has a more
straightforward solution.

Algorithm 3 (Weighted LS)
1. Let u0 and W be the resulting solution and work-

ing set from the previous sampling instant.

2. Rewrite the cost function as
∥
∥Wu(u − up)

∥
∥

2
+ γ

∥
∥Wv(Bu − v)

∥
∥

2
=

∥
∥
∥
∥
∥

(
γWvB

Wu

)

︸ ︷︷ ︸

A

u −

(
γWvv
Wuup

)

︸ ︷︷ ︸

b

∥
∥
∥
∥
∥

2

and solve

uW = arg min
u

∥
∥Au − b

∥
∥

u ≤ u ≤ u

using Algorithm 1.

The weighted rows are ordered first in A and b to avoid
numerical problems, see [1].

3.4 Computing the Solution
The only information forwarded from one optimization,
i.e., from one sampling instant, to the next is the re-
sulting solution and the set of active constraints. All
other parameters, such as B, up, Wu, and Wv, can be
updated to reflect the control effectiveness of the actu-
ators and the control distribution preferences.

The main computational steps in the active set algo-
rithm are to solve (6) for the optimal perturbation and
to compute the Lagrange multipliers. In the current
implementation, QR decompositions [1] are used for
these purposes. Due to space limitations we refer to
[11] for details.

The Matlab m-files used in the simulations can be
downloaded from the author’s homepage at

http://www.control.isy.liu.se/~ola/

4 Simulations

Let us now evaluate the two proposed algorithms and
compare them with some of the existing alternative
solvers discussed in Section 2.2.

4.1 Algorithms
The algorithms used in the evaluations are:

SLS Sequential least squares (Algorithm 2)
MLS Minimal least squares [13]
WLS Weighted least squares (Algorithm 3 with

γ = 1000)
WLS2 WLS with a maximum of N = 2 iterations

RPI Redistributed pseudoinverse [16]
FXP Fixed-point iteration algorithm [6]

(γ = 1000, 50 iterations)

In FXP the solution from the previous sample is used
as an initial guess to hot start the algorithm.

4.2 Aircraft Simulation Data
Aircraft data, consisting of the control effectiveness ma-
trix B (3×8) and the position and rate limits, are taken
from [8] to which we refer for details. The commanded
virtual control trajectory, v(t), is shown in Figure 1,
and corresponds to the helical path with radius 0.06
used in [8]. v(t) contains 85 samples, each consisting of
the commanded aerodynamic moment coefficients Cl,
Cm, and Cn. By varying tf , the final time of the trajec-
tory, different helical rates [8] are achieved. When the
rate is too high, some parts of the trajectory become
infeasible due to the actuator rate constraints.

4.3 Simulation Results
Three different cases were simulated:

Case 1: Feasible trajectory (tf = 25 s, helical rate
= 0.045) with Wu and Wv set to identity matrices
and up set to the zero vector. See Table 1 for
simulation results.

Case 2: Same trajectory as in case 1 but with

Wu = diag
(
10 10 1 1 1 1 1 1

)
(8)

This corresponds to penalizing the use of the hor-
izontal tails for control. See Table 2.

Case 3: Partially infeasible trajectory (tf = 4 s, heli-
cal rate = 0.28) with the same parameter setting
as in case 1. See Table 3 and Figure 1.

The simulations were performed in Matlab 6.1 run-
ning on an 800 MHz Pentium III computer. The tic

and toc commands were used to compute the timing
properties which were averaged over 1000 runs. The
mean and max errors given correspond to the mean
and max values of

∥
∥Bu(t) − v(t)

∥
∥ over time. Further-

more, the average number of saturated controls in the
solutions are given and also the average number of it-
erations performed by each algorithm.
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Figure 1: Simulation results for case 3. Left: Commanded
(gray) vs. generated (black) virtual controls.
Right: Left horizontal tail (u1) position (solid)
and position constraints (dashed).

4.4 Comments

Solution Quality All algorithms produce solutions
which satisfy the actuator position and rate con-
straints.

By construction, SLS and MLS both generate the exact
solution to the control allocation problem formulated
as the sequential least squares problem (2). WLS only
solves an approximation of the original problem, see
(3), but with the weight γ set to 1000 as in the sim-
ulations, WLS comes very close to recovering the true
optimal solution.

WLS2 uses at most two iterations, corresponding to at
most two changes per sample in the set of active ac-
tuator constraints. For the feasible trajectory, WLS2
almost exactly recovers the optimal solution, while for
the infeasible trajectory, the solution quality is some-
what degraded. The reason for WLS2 being so success-
ful can be seen from Figure 2. In most sampling in-
stants, WLS (without any restriction on the number of
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Figure 2: Histograms showing the number of iterations
performed by WLS for the three simulated
cases. In all cases, it holds that in less than half
of the sampling instants more than two itera-
tions are required to find the optimal solution.

iterations) finds the optimum in only one or two itera-
tions. In those instants where WLS needs three or more
iterations, WLS2 only finds a suboptimal solution, but
can be thought of as retrieving the correct active set a
few sampling instants later. Similar restrictions on the
number of iterations could also be introduced in SLS
and MLS.

The RPI performance seems difficult to predict. In case
1, the RPI solution satisfies Bu = v at each sampling
instant although some control surface time histories dif-
fer slightly from the optimal ones produced by SLS and
MLS. However, in case 2, the RPI solution is rather de-
graded. The same goes for case 3 where especially the
pitching coefficient is poorly reproduced. The general
flaw with RPI is the heuristic rule it is based on which
claims that it is optimal to saturate all control surfaces
which violate their bounds in some iteration. Note that
RPI yields the highest average number of actuator sat-
urations in all cases.

In all of the simulated cases, FXP generates rather
poor, although continuous, solutions to the control al-
location problem. This can be explained by the fact
that FXP is a gradient search method and therefore
suffers from the scalings introduced in (3) and in (8).

Timing Properties Overall, the timing results for
the different methods are within the same order of
magnitude. Thus, if RPI is considered a viable alter-
native for real-time applications, then so should SLS,
MLS, and definitely WLS be. For comparison, the typ-
ical sampling frequency in modern aircraft is 50-100 Hz
which corresponds to a sampling time of 10-20 ms.

WLS2 and FXP both have a maximum computation
time which by construction is independent of the tra-
jectory type. This is appealing since it makes the con-
trol allocation task easy to schedule in a real-time im-
plementation.



Algo-
rithm

Avg.
time
(ms)

Max
time
(ms)

Avg.
error

Max
error

Sat. Iter.

SLS 1.12 2.44 0 0 1.8 2.5

MLS 1.01 1.83 0 0 1.8 2.5

WLS 0.56 1.17 1.6e-5 3.1e-5 1.8 1.5

WLS2 0.55 0.77 1.6e-5 3.1e-5 1.8 1.5

RPI 0.91 1.50 0 0 2.0 2.4

FXP 1.97 1.99 1.6e-2 2.9e-2 0.5 50.0

Table 1: Simulation results for case 1.

Algo-
rithm

Avg.
time
(ms)

Max
time
(ms)

Avg.
error

Max
error

Sat. Iter.

SLS 1.30 3.41 0 0 2.9 2.9

MLS 1.12 2.75 0 0 2.9 2.8

WLS 0.60 1.84 1.3e-4 6.3e-4 2.9 1.8

WLS2 0.56 0.82 1.1e-3 2.1e-2 3.1 1.5

RPI 1.09 1.84 1.1e-2 9.0e-2 4.3 3.0

FXP 1.98 1.98 4.0e-2 7.1e-2 1.0 50.0

Table 2: Simulation results for case 2.

Algo-
rithm

Avg.
time
(ms)

Max
time
(ms)

Avg.
error

Max
error

Sat. Iter.

SLS 0.80 3.28 4.5e-3 1.2e-2 6.1 2.5

MLS 0.89 2.52 4.5e-3 1.2e-2 6.1 2.5

WLS 0.68 2.11 4.4e-3 1.2e-2 6.1 2.5

WLS2 0.51 0.79 1.0e-2 2.7e-2 6.4 1.6

RPI 0.94 1.46 3.0e-2 1.1e-1 7.6 2.6

FXP 1.98 2.01 1.3e-2 2.1e-2 1.0 50.0

Table 3: Simulation results for case 3.

5 Conclusions

The main conclusion that can be drawn from our in-
vestigations is that classical active set methods seem
well suited for real-time aircraft control allocation. The
computational complexity is similar to that of the redis-
tributed pseudoinverse method and the solutions pro-
duced are in general of the same or better quality.
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