
Backstepping Control of a Rigid Body

S. Torkel Glad and Ola Härkeg̊ard1

Abstract

A method for backstepping control of rigid body mo-
tion is proposed. The control variables are torques
and the force along the axis of motion. The proposed
control law and lyapunov function guarantee asymp-
totic stability from all initial values except one singular
point.

1 Introduction

An important tool for nonlinear control synthesis is
backstepping, see e.g. [4], [8]. The idea is to extend
a Lyapunov function from a simple system to systems
involving additional state variables and at the same
time design the feedback control to guarantee stabil-
ity. This technique has been successful in several ap-
plications, [1, 2, 3, 9]. Recently backstepping design
has been successfully applied to the control of aircraft,
[5, 6, 7]. The aircraft dynamics is essentially described
by rigid body dynamics in combination with equations
describing the aerodynamic forces. There are several
ways of designing controllers for rigid body equations
occuring in various applications, see e. g. [10, 11]. The
purpose of the present paper is to formulate a design
method for a controlled rigid body using backstepping
techniques. The design can then be specialized to air-
craft control problems or the control of various types
of vehicles.

2 Rigid body dynamics

We assume that the controlled object is a rigid body
with mass m. We describe the motion in a body fixed
coordinate system with the origin at the centre of mass
and obtain the equations:

V̇ = −ω × V +
1

m
F

Iω̇ = −ω × Iω + M

(1)

where V is the velocity, ω is the angular velocity, F

is the external force and M is the external torque (all
these quantities are vectors with three components). I

is the moment of inertia. We will assume that the force
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has the form

F = m(Fa(V ) + uvV̂ )

where V̂ = 1

|V |V and uv is a control variable. The first

part, Fa, corresponds to aerodynamic or hydrodynamic
forces, and the second part models approximately the
thrust action of an engine aligned with the velocity
vector. The moment M is assumed to depend on V , ω

and control variables.

3 Stationary motion

Consider a motion with V = Vo, ω = ωo where Vo, ωo

are constants. The velocity equation is then

ωo × Vo = Fa(Vo) + uvV̂o

where V̂o = 1

|V̂o|
Vo. Multiplying with V̂o shows that uv

has to satisfy
uv = −V̂ T

o Fa(Vo)

Then ωo can be calculated from

ωo =
1

|Vo|
(V̂o × Fa(Vo)) + γV̂o

where γ is an arbitrary constant. If uv and M can
be chosen arbitrarily it is thus possible to achieve a
stationary motion for any value of Vo.

4 Backstepping design

In this section we develop a backstepping design to
make Vo, ωo a stable equilibrium. Define

uM = I−1(M − ω × Iω)

We will regard uM as the control signal. Then the
dynamics is given by

V̇ = −ω × V + Fa(V ) + uvV̂

ω̇ = uM

(2)

First regard the angular velocity ω (together with uv)
as the control variable. Let V0 be the desired velocity
vector and introduce the Lyapunov candidate

W1 =
1

2
(V − Vo)

T (V − Vo)



Choose a control of the form

ω = ωdes = ω̄ +
1

|V |2
V × Fa(V )

After some manipulations this gives

Ẇ1 = −ω̄T (Vo × V ) + ūv(V − Vo)
T V̂

where uv = ūv − V̂ T Fa. Choosing

ω̄ = k1(Vo × V ), ūv = −(V − Vo)
T V̂

then gives

ωdes = k1(Vo × V ) +
1

|V |2
V × Fa(V )

Ẇ1|ω=ωdes = −k1|V0 × V |2 − ((V − Vo)
T V̂ )2 ≤ 0

In this expression Ẇ1|ω=ωdes = 0 only if V = Vo (pro-
vided the singularity V = 0 is avoided, which can be
done e.g. by starting so that |V − Vo| < |Vo|). The
lyapunov function thus guarantees convergence to the
desired V = Vo.

Define
ξ = ω − ωdes

In the new variables the dynamics is

V̇ = −ξ × V + k1(|V |2V0 − (V T V0)V ) + ūvV̂

ξ̇ = uM + φ(V, ξ)

where φ(V, ξ) = d

dt
(ωdes). Introducing

W2 = k2W1 +
1

2
ξT ξ

gives

Ẇ2 = −k1k2|V0 × V |2 − k2((V − Vo)
T V̂ )2 − k3ξ

T ξ ≤ 0

if we select the control

u = k2V0 × V − φ − k3ξ

Since Ẇ2 = 0 only occurs for V = Vo, ξ = 0 (except for
the singular case V = 0, discussed above) there will be
convergence to V = Vo, ξ = 0.

5 Conclusions

We have proposed a control law that steers the veloc-
ity and angular velocity vectors to desired values. The
control law uses external torques and a force along the
velocity vector. This configuration is similar to, but
not precisely equal to the one used in aircraft control,
where control surfaces generate torques and the engine
gives a longitudinal force. However, our proposed rigid
body control could inspire new aircraft control designs.
An interesting extension would be to take the orienta-
tion into account, which would make it possible to e.g.
include the effect of forces like gravity.
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[3] T. I. Fossen and Å. Grøvlen. Nonlinear output feed-
back control of dynamically positioned ships using vectorial
observer backstepping. IEEE Transactions on Control Sys-

tems Technology, 6(1):121–128, Jan. 1998.

[4] R. A. Freeman and P. V. Kokotović. Robust Nonlin-
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