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Abstract

A nonlinear approach to flight path angle control is
presented. Using backstepping, a globally stabilizing
control law is derived. Although the nonlinear nature
of the lift force is considered, the pitching moment to be
produced is only linear in the measured states. Thus,
the resulting control law is much simpler than if feed-
back linearization had been used. The free parameters
that spring from the backstepping design are used to
achieve a desired linear behavior around the operating
point.

1 Introduction

While many conventional flight control designs assume
the aircraft dynamics to be linear about some nominal
flight condition, this paper deals with the problem of
controlling an aircraft explicitly considering its nonlin-
ear dynamics. Contributions along this line often use
feedback linearization [9], i.e., controllers based upon
dynamic inversion, to deal with the nonlinearities. The
control law is designed to cancel the nonlinearities so
that the closed loop system is rendered linear.

Two motivating reasons for this can be found. First, a
linear system is easy to analyze with respect to stabil-
ity and performance. Second, a linear system has the
same dynamic properties independently of the operat-
ing point, e.g., speed, height, and angle of attack in the
aircraft case. The second is true only for linear systems
and cannot be competed with. We will therefore focus
on the first property and present an alternative way of
finding control laws that guarantee stability and can be
tuned to achieve a certain closed loop behavior.

Our main tool will be backstepping [4], a Lyapunov
based design method that has received a lot of atten-
tion during the last decade. Compared to feedback lin-
earization, backstepping offers a more flexible way of
dealing with nonlinearities. Using Lyapunov functions,
their impact on the system can be analyzed so that sta-
bilizing, and thus in a sense useful, nonlinearities may
be kept while harmful nonlinearities can be cancelled or
dominated by the control signal. Not having to cancel

all nonlinearities means that the resulting control law
may be much simpler than if feedback linearization had
been used.

In this paper, the application is flight path angle con-
trol. Using inherent characteristics of the lift force, we
will show that despite its nonlinear behavior around
the stall angle, it suffices to produce a pitching mo-
ment that is linear in the measured states to stabilize
the aircraft around the desired trajectory, regardless of
the initial state.

The remainder of the paper is organized as follows. Sec-
tion 2 presents backstepping in an informal setting. In
Section 3, a nonlinear model describing the longitudi-
nal aircraft dynamics in pure-feedback form, crucial to
the backstepping design, is derived. In Section 4, the
backstepping control law is derived in detail, and in
Section 5 the control law is evaluated using a realis-
tic simulation model. Section 6 contains a comparison
with feedback linearization.

2 Backstepping

For backstepping [4] to be applicable, the differential
equations describing the system dynamics need to have
a certain pure-feedback structure:

ẋ1 = f1(x1, x2)

...

ẋn−1 = fn−1(x1, . . . , xn−1, xn)

ẋn = fn(x1, . . . , xn, u)

(1)

The reason for this is the way a backstepping control
law, u(x), is recursively constructed with the aim of
bringing the state vector, x, to the origin.

To begin with, x2 is considered a virtual control of the
scalar ẋ1 subsystem. A stabilizing function, φ1(x1), is
determined such that ẋ1 = f1(x1, φ1(x1)) has the (sta-
ble) properties desired. However, x2 is not available for
control. The key property of backstepping is that it of-
fers a constructive way of forwarding the unattainable
control demand x2 = φ1(x1) to a new virtual control
law x3 = φ2(x1, x2). If this could be satisfied, x1 and
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Figure 1: Illustration of longitudinal aircraft entities.

x2 would be successfully brought to the origin. This
recursive procedure is repeated until the actual control
variable u is reached after n steps, whereby a stabilizing
control law, u = φn−1(x), has been constructed.

Along with the control law, a Lyapunov function is con-
structed, proving the stability of the closed loop system.

3 Aircraft model

In this paper only control about the longitudinal axis
is considered. With this restriction, the equations of
motion describing the aircraft take the form [10]

V̇ =
1

m
(−D + FT cosα − mg sin γ) (2)

γ̇ =
1

mV
(L + FT sinα − mg cos γ) (3)

θ̇ = q (4)

q̇ =
1

Iy

(M + FT ZTP ) (5)

The state variables are V = airspeed, γ = flight path
angle, θ = pitch angle, and q = pitch rate. α = θ− γ is
the angle of attack, FT is the engine thrust force, which
contributes to the pitching moment due to a thrust
point offset, ZTP . The aerodynamical effects on the
aircraft are captured by the lift and drag forces, L and
D, and the pitching moment, M . See Figure 1, where
δ represents the deflections of the control surfaces that
are at our disposal.

The controlled variables are V and γ. In the imple-
mented controller, evaluated in Section 5, airspeed con-
trol is handled separately using results from [7]. Our
control design will therefore focus solely on Equations
(3)-(5).

To meet the structural demand in Section 2, we will
neglect the dependence of the lift force on the pitch
rate and the control surface deflections. The principal
function of the control surfaces to produce an angular
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Figure 2: Typical lift force vs angle of attack relationship.

pitching moment. This will affect the angle of attack
to which the lift force is strongly related. Note that
this is exactly the same assumption which is needed
for dynamic inversion to be applied to aircraft control
[6]. Expressing L and M in terms of their aerodynamic
coefficients, we have that

L = q̄SCL(α)

M = q̄Sc̄Cm(α, q, δ)
(6)

where q̄ = 1

2
ρV 2 is the dynamic pressure, ρ is the air

density, S is the wing platform area, and c̄ is the mean
aerodynamic chord.

4 Design for flight path angle control

4.1 Deriving the control law

The system description consists of Equations (3)-(5),
where the flight path angle γ is to be controlled. Given
the reference value, γref, the angle of attack at steady
state, α0, is defined through γ̇ = 0, see Equation (3).
In the actual implementation, α0 is computed on-line
and updated at each time step, using current values of
q̄, δ1, and FT . Although this pragmatic approach to de-
termining α0 is not guaranteed to converge, successful
simulations provide an alibi.

In Equation (3), the γ dependence of the gravitational
term plays an insignificant role. Therefore we will only
consider its contribution at the equilibrium, and assume
the dynamics to be

γ̇ =
1

mV
(L(α) + FT sinα − mg cos γref)

, ϕ(α − α0)
(7)

where ϕ(0) = 0. Using the sign properties of its com-
ponents, L(α), see Figure 2 for a typical example, and
FT sin α, we conclude that

αϕ(α) > 0, α 6= 0 (8)

1In computing α0, the lift force dependence on δ is included.



for all α of practical interest2. This is a vital property
for the backstepping control design to follow which will
be done in three steps.

Step 1: First introduce the control error

z1 = γ − γref

whose dynamics are given by

ż1 = ϕ(α − α0) (9)

considering a constant reference value. Now use the
control Lyapunov function (clf)

V1 =
1

2
z2

1

to determine a stabilizing function, θdes, considering θ
as the control input of Equation (9).

V̇1 = z1ϕ(α − α0)

= z1ϕ(θ − z1 − γref − α0)

= z1ϕ(−(1 + c1)z1 + θ + c1z1 − γref − α0)

= z1ϕ(−(1 + c1)z1) < 0, z1 6= 0

is achieved by selecting

θdes = −c1z1 + γref + α0, c1 > −1 (10)

The fact that c1 = 0 is a valid choice means that γ
feedback is not necessary for the sake of stabilization.
However, it provides an extra degree of freedom for tun-
ing the closed loop performance.

Step 2: Continue by introducing the deviation from
the virtual control law (10).

z2 = θ − θdes = θ + c1z1 − γref − α0

Defining

ξ = −(1 + c1)z1 + z2

we have that

ż1 = ϕ(ξ)

ż2 = q + c1ϕ(ξ)

We will also need

ξ̇ = −ϕ(ξ) + q

A regular backstepping design would proceed by ex-
panding the control Lyapunov function with a term pe-
nalizing z2. We do this, but also add a term F (ξ) as

2Strictly speaking, there exist limiting angles of attack, αmin

and αmax, beyond which either Equation (8) stops to hold or
where our simple aircraft model is no longer valid. Using the
Lyapunov function to be constructed the true region of attraction
could, at least theoretically, be computed.

an extra degree of freedom, where F is required to be
positive definite and radially growing. This extension
of the backstepping procedure is due to [5]. Hence,

V2 =
c2

2
z2

1 +
1

2
z2

2 + F (ξ), c2 > 0

We compute its time derivative to find a new stabilizing
function, qdes.

V̇2 = c2z1ϕ(ξ) + z2(q + c1ϕ(ξ)) + F ′(ξ)(−ϕ(ξ) + q)

= (c2z1 + c1z2 − F ′(ξ))ϕ(ξ) + (z2 + F ′(ξ))q

Although it may not be transparent, we can again find
a stabilizing function independent of ϕ. Choosing

qdes = −c3z2, c3 > 0 (11)

F ′(ξ) = c4ϕ(ξ), F (0) = 0, c4 > 0 (12)

where (12) is an implicit but perfectly valid choice of
F , yields

V̇2 = (c2z1 + (c1 − c3c4)z2)ϕ(ξ) − c4ϕ(ξ)2 − c3z
2

2

Selecting

c2 = −(1 + c1)(c1 − c3c4), c3c4 > c1 (13)

gives the negative definiteness of V̇2 that we want since

V̇2 = (c1 − c3c4)ξϕ(ξ) − c4ϕ(ξ)2 − c3z
2

2 < 0

for all z1, z2 6= 0, again using (8). The benefit of using
the extra term F (ξ) shows up in Equation (13). F (ξ) ≡
0 leads to c2 = −(1+c1)c1 > 0 and the severe restriction
c1 < 0 implying positive feedback from z1.

Step 3: The final backstepping iteration begins with
introducing the third residual

z3 = q − qdes = q + c3z2

We also update the system description

ż1 = ϕ(ξ)

ż2 = z3 − c3z2 + c1ϕ(ξ)

ż3 = u + c3(z3 − c3z2 + c1ϕ(ξ))

(14)

where

u =
1

Iy

(M(α, q, δ) + FT ZTP ) (15)

is regarded as the control variable. Also,

ξ̇ = −ϕ(ξ) + z3 − c3z2

V3 is constructed by adding a term penalizing z3.

V3 = c5V2 +
1

2
z2

3 , c5 > 0



We get

V̇3 = c5

(

(c1 − c3c4)ξϕ(ξ) − c4ϕ(ξ)2 − c3z
2

2

+ z3(z2 + c4ϕ(ξ))
)

+ z3(u + c3(z3 − c3z2 + c1ϕ(ξ)))

≤ − c4c5ϕ
2(ξ) − c3c5z

2

2

+ z3(u + c3z3 + (c5 − c2

3)z2 + (c1c3 + c4c5)ϕ(ξ))

once again using (8). Select c5 = c2
3 to cancel the z2z3

cross-term and try yet another linear control law.

u = −c6z3, c6 > c3 (16)

is a natural candidate and with this we investigate the
resulting clf time derivative.

V̇3 ≤− c2

3c4ϕ
2(ξ) − c3

3z
2

2 − (c6 − c3)z
2

3

+ (c1c3 + c2

3c4)z3ϕ(ξ)

The first three terms on the right hand side are all ben-
eficial. In order to investigate the impact of the last
cross-term, we complete the squares.

V̇3 ≤ − c3

3z
2

2 − (c6 − c3)(z3 −
c1c3 + c2

3c4

2(c6 − c3)
ϕ(ξ))2

− (c2

3c4 −
(c1c3 + c2

3c4)
2

4(c6 − c3)
)ϕ2(ξ)

V̇3 is negative definite provided that the ϕ2(ξ) coeffi-
cient is negative, which is true for

c6 > c3(1 +
(c1 + c3c4)

2

4c3c4

) (17)

We now pick c4 to minimize this lower limit under the
constraints c4 > 0 and c3c4 > c1.

For c1 ≤ 0, we can make c1 + c3c4 arbitrarily small
whereby Equation (17) reduces to

c6 > c3

For c1 > 0 the optimal strategy can be shown to be
selecting c4 arbitrarily close to the bound c1/c3. This
yields

c6 > c3(1 + c1)

Summary: Let us summarize our results. The ini-
tial system (3)-(5) was transformed into (14) through a
backstepping design. For the latter, the linear control
law (16) was shown to be globally stabilizing despite
the nonlinear nature of the system. In terms of the
original state variables the control law becomes

u = −c6(q + c3(θ + c1(γ − γref) − γref − α0)) (18)

c1, c3 and c6 are user parameters restricted by

c1 > −1

c3 > 0

c6 >

{

c3 c1 ≤ 0
c3(1 + c1) c1 > 0

(19)

4.2 Tuning the controller

The resulting control law (18) is parameterized by the
three parameters c1, c3, and c6. It can be rewritten as

u = −kx

k =
(

c1c3c6 c3c6 c6

)

xT =
(

γ − γref θ − γref − α0 q
)

(20)

Closed loop stability is ensured as long as the parameter
restrictions above are satisfied. What is then a suitable
choice?

A natural course of action is to linearize the open loop
system (3)-(5) around a proper operating point, and
determine a satisfactory linear control law, u = −kx.
Then solve (20) for c1, c3, and c6 and check if these are
in agreement with the given restrictions. If so, the con-
trol law (18) locally achieves the desired linear closed
loop behavior, and globally guarantees stability. If the
restrictions are violated, the guarantee for global sta-
bility is lost.

This trial and error strategy for finding possible closed
loop systems may seem unsatisfactory. However, the re-
verse task of mapping the parameter restrictions above
onto restrictions regarding, e.g., closed loop pole place-
ments is not trivial and will not be dealt with here.

4.3 Realizing the controller

The derived control law (18) regards the angular pitch
acceleration, q̇, as the control variable, see Equation
(15). In this section we deal with the issue of finding
control surface deflections, δ, that will produce the de-
sired pitching moment, M .

Since exact knowledge of neither the pitching moment
nor the thrust force is available, we will include an extra
term to capture the residual. Thus we remodel Equa-
tion (5) as

q̇ = u =
1

Iy

(q̄Sc̄Cm(α, q, δ) + FT ZTP ) + E (21)

where Cm and FT represent the information available
to us through an identified aircraft model. To capture
a constant bias, we model E as

Ė = 0 (22)

We note that the nonlinear first part of (21) (excluding
E) depends only on known quantities. This allows us
to build an observer for (21)-(22) having linear error
dynamics [3], thus producing an estimate of E with an
exponentially decaying error.

With E at our disposal, we solve (21) for Cm.

Cm(α, q, δ) =
Iy(u − E) − FT ZTP

q̄Sc̄
(23)



The HIRM configuration offers two ways of controlling
the pitching coefficient; via the taileron at the back of
the aircraft, and via the canard wings. A number of
ways of how to divide the work between these control
surfaces have been suggested. In this paper, however,
we put no effort into optimizing this aspect but sim-
ply ignore the canard wings, leaving everything to the
taileron. In the following, δ will therefore represent the
taileron’s angle of deflection, see Figure 1.

The pitching coefficient, Cm, is usually a complicated
function of the arguments involved. The standard way
of modeling it is to collect measurements for a number
of different situations and create a look-up table from
which intermediate values can be interpolated. Assum-
ing such a table is available to us, it can be used to
solve (23) for δ. Given measurements of α and q, the
left hand side typically becomes a close to monotonic
function of δ. This fits many numerical solvers well,
and the Van Wijngaarden-Dekker-Brent method [1, 2]
was chosen for solving (23). This method is a happy
marriage between bisection, providing sureness of con-
vergence, and inverse quadratic interpolation, providing
superlinear convergence in the best-case scenario.

Naturally, there are hard bounds on the possible
taileron deflections. For the HIRM, δ ∈ [−40◦, 10◦]
is the possible range. In cases where (23) cannot be
satisfied, i.e., when enough pitching moment cannot be
produced, we saturate and choose the proper δ bound.
The effects of saturation have only been studied empir-
ically.

5 Application

In this section we investigate the properties of the de-
rived control law, applied to High Incidence Research
Model (HIRM), a realistic model of a generic fighter air-
craft. The model was originally released for the GAR-
TEUR robust flight control challenge [8].

For the simulations, a flight case where the aircraft is
in level flight at Mach 0.3 and at a height of 5000 ft was
chosen. Actuator and sensor dynamics, which were not
considered in the preceding design, were included in the
simulations. Also, a constant pitch coefficient error of
−0.030 was added to Cm. The simulation results are
reproduced in Figure 3.

The top picture displays the flight path angle time re-
sponse to a staircase reference signal. Also plotted is
the time response of the desired linear closed loop sys-
tem, i.e., the control law applied to the linearization of
(3)-(5). We see that for small changes in the reference,
the simulated response stays very close to the linear
one. For the large step in the reference, occurring af-
ter 5 seconds, the simulated response has a longer rise
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Figure 3: From top to bottom: γ time response compared
with the designed linear response, α time re-
sponse, taileron deflection, and finally the true
q̇ compared with Equation (21), with and with-
out the model error estimate E.



time. This has two main causes. First, we see that the
control surfaces saturate at the beginning of the step,
thus not producing the desired pitching moment. This
consequently slows down the step response. Second,
the angle of attack becomes very large during the ma-
neuver. When α reaches its peak after 7 seconds, the
true lift force value is significantly smaller than what
the linear model predicts, see Figure 2. In agreement
with Equation (3), this also leads to slower γ dynamics.

In the bottom picture, the benefit of estimating the
model error E can be seen. The dotted curve, rep-
resenting the complete model of the angular pitch ac-
celeration introduced in Equation (21), initially has a
bias error compared to the true q̇. This error is quickly
estimated whereafter the curve closely follows the solid
curve, representing the true q̇. The latter was computed
by differentiating q sensor data.

6 Backstepping vs feedback linearization

Having derived the globally stabilizing control law (18)
for (3)-(5) using backstepping, it is rewarding to make
a comparison with a feedback linearizing control de-
sign. Again using z1 = γ − γref, feedback linearization
proceeds by defining

ż1 = ϕ(α − α0) = z2

ż2 = ϕ′(α − α0)(q − z2) = z3

ż3 = ϕ′′(α − α0)(q − z2)
2 + ϕ′(α − α0)(u − z3) = ũ

Selecting ũ = −
(

k1 k2 k3

) (

z1 z2 z3

)T
clearly

renders the closed loop system linear in the z coor-
dinates. Solving for the angular acceleration u to be
produced, defined as in (15), we get

u = z3 +
ũ − ϕ′′(α − α0)(q − z2)

2

ϕ′(α − α0)
(24)

Two things are worth noting about this expression.
First, it depends not only ϕ, but also on its first and
second derivatives. Recalling its definition from Equa-
tion (7), this means that the lift force L must be well
known in order to accurately compute u. In the back-
stepping design, we relied on L only through its zero
crossing and its sign switching property (8). Second, ϕ′

is in the denominator of the expression above, implying
that the control law has a singularity where ϕ′ = 0.
This occurs around the stall angle, where the lift force
no longer increases with α, see Figure 2.

7 Conclusions

In this paper we have applied backstepping to flight
path angle control. Regarding the pitching moment as

the control variable, we have shown a linear control law
to be globally stabilizing despite the nonlinear nature
of the lift force with respect to the angle of attack. The
fact that the control law is linear makes it easy to tune
given a linearization of the open loop system. Using this
the locally linear closed loop behavior can be selected.

Simulations using a realistic aircraft model including
actuator and sensor dynamics, and a constant pitch
coefficient error proved the control law to be robust
against the approximations made during the design.

A comparison with feedback linearization showed the
potential benefits of using backstepping. The backstep-
ping control law is computationally much simpler, and
is globally stabilizing while feedback linearization yields
a singularity in the control law around the stall angle.
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